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Applications of Survival Estimation Under Stochastic

Order to Cancer: The Three Sample Problem

Sage Vantine

Abstract

Stochastic ordering of probability distributions holds various practical applications. How-

ever, in real-world scenarios, the empirical survival functions extracted from actual data often

fail to meet the requirements of stochastic ordering. Consequently, we must devise methods to

estimate these distribution curves in order to satisfy the constraint. In practical applications,

such as the investigation of the time of death or the progression of diseases like cancer, we

frequently observe that patients with one condition are expected to exhibit a higher likelihood

of survival at all time points compared to those with a di�erent condition. Nevertheless, when

we attempt to fit a survival curve based on real-world data, this anticipated behavior may not

always be seen. Therefore, it becomes crucial to estimate these curves to provide a more accu-

rate representation of the true survival times for patients under di�erent conditions. To address

this challenge, we harness the insights of various statisticians and adapt their methodologies

from one-sample and two-sample cases to the more complex scenario of a three-sample case.

In this case, we work with data obtained from three distinct populations for several kinds of

cancer. Given the inherent complexity of such data, it is highly likely that the empirical sur-

vival functions derived from it will not conform to stochastic ordering constraints, necessitating

the estimation process. This study investigates four di�erent estimators applied to data repre-

senting the relative survival rates of various racial groups a�ected by eight di�erent types of

cancer. Ultimately, our goal is to determine which, if any, of these estimators perform the best

in terms of Bias and Mean Square Error.
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1 Introduction

In real-world applications, the empirical survival functions extracted from actual data often defy

the strict constraints of stochastic ordering. This disparity raises the necessity of finding methods

to estimate the curves of these distributions, ensuring that the constraints of stochastic ordering

are met. These estimations are instrumental in portraying the genuine survival times of distinct

populations subject to di�erent conditions, as exemplified in research focused on topics such as the

time of death or the progression of diseases like cancer.

The challenges posed by real-world data and the vital role of stochastic ordering converge in this

study, where we look at the insights of various statisticians. The objective is to adapt and expand

their methodologies, originally designed for simpler one-sample and two-sample cases, into the

more intricate three-sample scenario. We do this by applying these methods to data collected from

three unique populations. Given the inherent complexity of this data, it is foreseeable that the

empirical survival functions derived may deviate from the stipulated constraints, underscoring the

need for innovative estimation techniques.

This research aims to investigate four distinct estimators, which are put to the test against real-

world data representing the relative survival rates of diverse racial groups a�icted by eight di�erent

forms of cancer. The aim is to scrutinize these estimators, employing metrics like Bias and Mean

Squared Error, to decide which, if any, stands as the optimal choice for future survival data analysis.
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Dr. Javier Rojo addressed the challenge of estimating two empirical survival curves derived

from samples taken from two stochastically ordered distributions. He utilized estimators proposed

by Shaw-Hwa Lo (Lo, 1987; Rojo, 2004). Extending these concepts to the three-sample scenario

poses a unique di�culty, as there is no universally recognized "best" method for estimating em-

pirical survival functions under this scenario. While El Barmi and Mukerjee explored cases with

k > 2 populations in 2005, they did not provide a specific estimation approach tailored to exactly

three samples (Barmi & Mukerjee, 2005).

This paper discusses estimators generated through collaboration with Rojo and one proposed

by El Barmi and Mukerjee’s k-sample estimator (Barmi & Mukerjee, 2005). Other methods have

been explored to estimate these empirical survival functions to maintain stochastic ordering, such

as non-parametric maximum likelihood estimation by Park, Kalbfleisch, and Taylor, and empirical

likelihood tests by El Barmi (El Barmi, 2017; Park, Kalbfleisch, & Taylor, 2012).

In this research, we employ diverse techniques to select the maximum and minimum values

from one, two, or all three empirical survival functions, thereby e�ectively addressing the stochastic

ordering constraint. Leveraging empirical survival functions is particularly beneficial for estimating

true survival functions due to their asymptotic distribution and unbiased nature. To assess the

performance of the four estimators applied in this study, we evaluate their bias and mean squared

error (MSE).

In essence, this paper seeks to identify the most e�ective estimator among four options for

estimating survival curves in the context of three distinct populations: non-Hispanic Black, non-

Hispanic White, and Hispanic individuals—across various types of cancer. The sections are struc-

tured as follows: this first section acts as an introduction, the second section delves into essential

background information, the third section describes the chosen estimators, the fourth section of-

fers a concise overview of preliminary research conducted during the Summer of 2023 at the RU-

SIS@IU program, the fifth section details the project’s methodology, and the sixth section presents

a thorough analysis of the results.
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2 Background

The following discussion provides a comprehensive background, introducing the core principles of

survival analysis and the concept of stochastic ordering.

We begin by introducing the concept of survival analysis and its application in various domains.

From there, we delve into stochastic ordering, an important concept in survival analysis, and explain

its significance in comparing and ordering probability distributions. While stochastic ordering pro-

vides a robust framework for theoretical comparisons, the empirical reality often presents unique

challenges. Real-world data may deviate from what is expected, and these discrepancies require

innovative methods for accurate estimation of survival curves.

Accurate survival curve estimation has the potential to transform healthcare, epidemiology, and

statistical sciences, contributing to more informed decisions and improved models. Our investiga-

tion addresses these challenges, aiming to select the most suitable estimator for future survival data

analyses while recognizing the critical role of statistical science in addressing real-world complex-

ities.

2.1 Introduction to Survival Analysis

Survival analysis is a statistical methodology that plays a pivotal role in understanding and modeling

the time to an event of interest, particularly in contexts where time is a fundamental aspect of the

study (Oakes, 2000). Its core objective is to investigate the distribution of time until a specific

event occurs, which can encompass a variety of outcomes, from life and death in medical studies

to failure times of mechanical components in engineering.

In healthcare, for example, survival analysis is frequently used to explore the progression of

diseases, estimate patient lifetimes, and compare the e�cacy of di�erent treatments. In actuarial

science, it is essential for determining life insurance premiums and the associated risk assessments.

The survival analysis framework o�ers a unique perspective on the uncertainties inherent in various

events and outcomes, making it essential in addressing research questions related to the duration of
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time-based processes.

2.2 Stochastic Ordering

A central concept in survival analysis is stochastic ordering. Stochastic ordering entails a compari-

son between probability distributions, o�ering a framework for understanding the relative risks and

lifetimes of di�erent populations or groups. It enables researchers to quantify the probability that

one event occurs earlier than another, given the distributions of these events.

Stochastic ordering establishes a hierarchy among random variables by characterizing their rel-

ative "favorability." Specifically, given two probability distributions, one can be consistently more

"favorable" than the other. Stochastic ordering allows the systematic exploration of which event

occurs sooner or more frequently.

We let X and Y represent two random lifetimes and let X and Y have F and G as their distinct

distribution functions, respectively. E.L. Lehmann defines X as being stochastically larger than Y

if F (x) f G(x) for all x. In terms of survival functions, ÑF = 1*F and ÑG = 1*G, stochastic order

must be estimated subject to the condition that ÑF (x) g ÑG(x) (Rojo, 2004).

2.3 Real-World Challenges

While stochastic ordering serves as a powerful theoretical construct in survival analysis, the real-

world application of these principles often presents challenges. One of the primary challenges arises

from the discrepancies observed between theoretical expectations and empirical observations. Em-

pirical survival functions derived from actual data may not always conform to the constraints im-

posed by stochastic ordering. As mentioned before, this emphasizes the need for methodologies to

estimate the true survival curves of diverse populations under di�erent conditions accurately.

These challenges are particularly pronounced in practical applications, such as studying the time

of death or the progression of diseases like cancer. In these scenarios, it is frequently observed that

patients with certain conditions are expected to exhibit higher likelihoods of survival at all time

points compared to those with di�erent conditions. However, when attempting to fit a survival
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curve based on real-world data, this anticipated behavior may not always be realized.

2.4 Literature Review

The estimation of distribution functions subject to stochastic order constraints is a critical problem

in statistical research. This literature review synthesizes the findings and methodologies presented

in a selection of scholarly articles that address this issue. Stochastic order constraints, which dictate

the relationship between two or more distribution functions, have applications in various fields, such

as reliability analysis, finance, and epidemiology. This review highlights the key contributions from

each article, emphasizing their relevance to statistical estimation and their implications for practical

applications.

Arcones et al. introduced the concept of stochastic precedence between random variables X

and Y and discussed estimation methods when data are subject to such constraints (Arcones et al.,

2002). Although their definition of stochastic precedence di�ers from other studies, it remains

comparable. The authors proposed two estimation approaches: data shrinkage and data translation.

These methods yield estimators that adhere to the stochastic precedence constraint and are shown

to be root n-consistent (Arcones et al., 2002). This work provides essential insights into estimation

methods for data with stochastic precedence constraints, which are valuable for understanding the

behavior of random variables in various contexts.

In a journal article written in 2017, El Barmi focused on testing for uniform stochastic ordering

between two univariate distribution functions using empirical likelihood-based tests, specifically

under right censoring, which indicates that the survival times for certain individuals extend be-

yond the observation period or certain individuals died from events other than that being studied,

introducing complexities that need to be addressed in the analysis (El Barmi, 2017). These tests,

based on localized empirical likelihood statistics, exhibit distribution-free asymptotic properties (El

Barmi, 2017). The study demonstrated the superiority of these tests in terms of power compared

to traditional methods. This research contributes valuable tools for assessing stochastic ordering in

practical scenarios with censored data.
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El Barmi and Mukergee extended the study of stochastic ordering to cases involving multiple

populations, each characterized by a distribution function (Barmi & Mukerjee, 2005). They pro-

vided simpler estimators for situations with more than two populations (k > 2) and demonstrated

strong and uniform consistency (Barmi & Mukerjee, 2005). This work is particularly relevant for

researchers studying scenarios with multiple populations under stochastic ordering constraints.

Lo addressed the estimation of two sets of data, each following independent distribution func-

tions, while maintaining an order restriction that one distribution is stochastically greater than the

other (Lo, 1987). The paper established asymptotic minimax bounds and constructed estimators

that adhere to the specified order relationship (Lo, 1987). This approach is applicable to scenar-

ios where maintaining stochastic order constraints is essential for accurate distribution function

estimation.

Park et al. proposed a pointwise-constrained non-parametric maximum likelihood estimator for

survival functions under right censoring and stochastic order constraints (Park, Taylor, & Kalbfleisch,

2012). This novel estimator outperformed alternative methods in both small and large sample sce-

narios, as demonstrated through simulations and the analysis of real-world data (Park, Taylor, &

Kalbfleisch, 2012). The approach o�ers a practical solution for estimating survival functions while

preserving stochastic order relationships.

Puri and Singh presented an estimator for an unknown cumulative distribution function (CDF)

when a known CDF stochastically dominates the estimator (Puri & Singh, 1992). This estimator,

based on modifying the empirical CDF, was proven to be consistent and demonstrated smaller

mean squared error compared to the standard empirical CDF (Puri & Singh, 1992). This approach

aligns with several other studies in this review, emphasizing the importance of maintaining order

constraints in distribution function estimation.

Rojo and El Barmi introduced a family of estimators for survival functions under second-

order stochastic dominance (Jiménez & Barmi, 2003). These estimators demonstrated strong uni-

form consistency and outperformed the empirical distribution function for specific loss functions

(Jiménez & Barmi, 2003). The study expanded the understanding of distribution function estima-
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tion under second-order stochastic dominance, o�ering practical applications in fields where such

dominance relationships are relevant.

Rojo and Ma explored nonparametric maximum likelihood estimators in the context of esti-

mating survival functions under stochastic ordering constraints (Rojo & Ma, 1996). The study

compared these estimators with others proposed in previous research, highlighting potential biases

associated with di�erent methods, particularly in one-sample problems (Rojo & Ma, 1996). This re-

search informs the choice of estimation methods when dealing with stochastic ordering constraints

in survival analysis.

Rojo discussed the estimation of distribution functions under stochastic order constraints, in-

troducing new estimators that are strongly uniformly consistent (Rojo, 2004). These estimators are

particularly useful when one of the sample sizes increases. The paper also examined the asymp-

totic distribution of these estimators for hypothesis testing purposes (Rojo, 2004). The findings

emphasized the superior performance of these estimators in various examples, underscoring their

practical significance.

3 The Estimators

This section will describe, in detail, the four estimators that were used in this study. The first three

estimators were proposed by Dr. Javier Rojo from Indiana University during the 2023 RUSIS@IU

program, while the fourth estimator was chosen in collaboration with Dr. Rojo during the same

program. The goal of the estimators was to use varying techniques to estimate stochastic order.

These techniques include using the max and min functions, as well as benchmark functions that

will be discussed later in this section. Also used in this research are empirical survival functions,

which we define as the estimate of a true, but often unknown, survival function based on observed

data.

Each estimator assumes the existence of three populations from which we have three empirical

survival functions ÑF
<, ÑG

<, and ÑH
< where at most points ÑF

< g ÑG
< g ÑH

<, in other words the
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conditions for stochastic order are nearly met.

We define the benchmark function R as the weighted average between two empirical survival

functions as follows:

R
n1n2

( ÑF <
, ÑG

<) =
n1 � ÑF

<(x) + n2 � ÑG
<(x)

n1 + n2
(1)

R
n2n3

( ÑG<
, ÑH

<) =
n2 � ÑG

<(x) + n3 � ÑH
<(x)

n2 + n3
(2)

R
n1n3

( ÑF <
, ÑH

<) =
n1 � ÑF

<(x) + n3 � ÑH
<(x)

n1 + n3
(3)

The estimation of each survival function will be denoted as ÇÑF , ÇÑG, and ÇÑH .

3.1 First Estimator

The first estimator was suggested by Dr. Javier Rojo during the 2023 RUSIS@IU program. This

estimator depends on the maximum and minimum of the empirical survival probabilities. Estimator

1 is a mathematical method designed to estimate three survival functions, denoted as ÇÑF , ÇÑG, and ÇÑH ,

based on empirical survival functions ÑF
<, ÑG

<, and ÑH
< derived from three populations. The key

assumption is that the stochastic order is nearly met, meaning that at most points, the survival

probabilities follow the order ÑF
< g ÑG

< g ÑH
<. The estimation involves a benchmark function

R defined as weighted averages between pairs of empirical survival functions. Estimator 1 for ÇÑF

considers three scenarios based on the maximum survival probability among the populations at a

given point, incorporating weighted averages and benchmark functions accordingly. Similarly, for
ÇÑH , three scenarios are considered based on the minimum survival probability. We define Estimator

1 as follows:
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ÇÑF (x) =

h
n
n
n
l
n
n
nj

ÑF
<(x) if max{ ÑF

<(x), ÑG<(x), ÑH
<(x)} = ÑF

<(x),

max{R
n1n2

( ÑF <
, ÑG

<),R
n1n3

( ÑF <
, ÑH

<)} if max{ ÑF
<(x), ÑG<(x), ÑH

<(x)} = ÑG
<(x)),

R
n1n3

( ÑF <
, ÑH

<) if max{ ÑF
<(x), ÑG<(x), ÑH

<(x)} = ÑH
<(x),

(4)

ÇÑH(x) =

h
n
n
n
l
n
n
nj

ÑH
<(x) if min{ ÑF

<(x), ÑG<(x), ÑH
<(x)} = ÑH

<(x),

min{R
n1n3

( ÑF <
, ÑH

<),R
n2n3

( ÑG<
, ÑH

<)} if min{ ÑF
<(x), ÑG<(x), ÑH

<(x)} = ÑG
<(x),

R
n1n2

( ÑF <
, ÑH

<) if min{ ÑF
<(x), ÑG<(x), ÑH

<(x)} = ÑF
<(x),

(5)

and

ÇÑG(x) = max{ ÇÑH(x),min{ ÇÑF (x), ÑG<(x)}}. (6)

Notably, the use of the max function in ÇÑF and the min function in ÇÑH , when ÑG
< is the maxi-

mum or minimum, ensures the estimator adapts to the relative positions of the populations at spe-

cific points. The significance lies in the nuanced treatment of survival probabilities, leveraging

benchmark functions and weighted averages to capture the interplay between the populations in the

estimation process.

3.2 Second Estimator

The second estimator suggested by Dr. Rojo was inspired by the one-sample problem considered

by Rojo and Ma, where the stochastically smallest empirical CDF is treated as a known distribution

(Rojo & Ma, 1996). Estimator 2 is a straightforward and comparably simple method for estimating

three survival functions. In this approach, each estimator is determined by selecting the maximum

9



survival probability among the corresponding populations at a given point. Specifically, ÇÑF is the

maximum among ÑF
<, ÑG

<, and ÑH
<, ÇÑG is the maximum between ÑG

< and ÑH
<, and ÇÑH is simply the

survival function for ÑH
<. Unlike Estimator 1, this method does not involve weighted averages.

Instead, it provides a straightforward estimation by selecting the survival function associated with

the population that exhibits the highest survival probability at each point. This simplicity may be

useful in situations where a direct and unweighted comparison is favorable. We define the second

estimator as follows:

ÇÑF (x) = max{ ÑF
<(x), ÑG<(x), ÑH

<(x)}, (7)

ÇÑG(x) = max{ ÑG
<(x), ÑH

<(x)} (8)

ÇÑH(x) = ÑH
<(x). (9)

3.3 Third Estimator

The third estimator was also suggested by Dr. Javier Rojo during the 2023 RUSIS@IU program.

The estimation process for this estimator involves a combination of direct selection and use of

benchmark functions. Specifically, ÇÑF is determined by selecting the maximum survival probability

between ÑF
< and the estimated ÇÑG. ÇÑG itself is determined by selecting the maximum between ÑG

< and

a benchmark function, R
n2n3

( ÑG<
, ÑH

<). This benchmark function is a weighted average between the

empirical survival functions of ÑG
< and ÑH

<, introducing a comparative element in the estimation.

Similarly, ÇÑH is determined by selecting the minimum survival probability between ÑH
< and the

same benchmark function. Estimator 3, therefore, provides a more nuanced approach to survival

function estimation. We define Estimator 3 as follows:

ÇÑF (x) = max{ ÑF
<(x), ÇÑG(x)}, (10)

ÇÑG(x) = max{ ÑG
<(x),R

n2n3
( ÑG<

, ÑH
<) (11)

ÇÑH(x) = min{ ÑH
<(x),R

n2n3
( ÑG<

, ÑH
<)}. (12)
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3.4 Fourth Estimator

The fourth estimator considers the benchmark of all three estimators, inspired by El Barmi and Muk-

erjee (Barmi & Mukerjee, 2005). The estimator they propose is defined by ÇÑF
i
= max

rfi min
sgi

≥s

j=r
n
j
ÑF
j≥s

j=r nj

(Barmi & Mukerjee, 2005) where 1 f r, s f k. Each estimator is defined di�erently based on the

bounds of the maximum and minimum.

For the purposes of this research, we create a new benchmark function that includes more than

two of the survival functions. The combined weighted average of all three empirical survival func-

tions will be denoted as R
n1n2n3

( ÑF <
, ÑG

<
, ÑH

<) and defined as

R
n1n2n3

( ÑF <
, ÑG

<
, ÑH

<) =
n1 ÑF

<(x) + n2 ÑG
<(x) + n3 ÑH

<(x)
n1 + n2 + n3

, (13)

using the same earlier defined empirical survival functions.

For this estimator, the estimation process for each survival function is defined in terms of a

selection among various benchmark functions. Specifically, ÇÑF is determined by selecting the max-

imum among the benchmark functions involving all possible pairs and the newly introduced triplet

of survival functions. ÇÑG is directly set equal to the benchmark function representing the combined

weighted average of all three populations. Lastly, ÇÑH is determined by selecting the minimum among

the benchmark functions. Estimator 4 is notable for incorporating both two-way and three-way com-

parisons between the survival functions, o�ering a refined approach to survival function estimation

in the context of multiple populations.

Estimator 4 will be defined as follows:

ÇÑF (x) = max{R
n1n2

( ÑF <
, ÑG

<),R
n2n3

( ÑG<
, ÑH

<),R
n1n3

( ÑF <
, ÑH

<),R
n1n2n3

( ÑF <
, ÑG

<
, ÑH

<)}, (14)

ÇÑG(x) = R
n1n2n3

( ÑF <
, ÑG

<
, ÑH

<), (15)

ÇÑH(x) = min{R
n1n2

( ÑF <
, ÑG

<),R
n2n3

( ÑG<
, ÑH

<),R
n1n3

( ÑF <
, ÑH

<),R
n1n2n3

( ÑF <
, ÑG

<
, ÑH

<)}. (16)
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4 Preliminary Research

Preliminary findings from collaborative research conducted by Vanessa Avilez of California State

University Fullerton and Evan Strong of Colorado Mesa University, as part of the Research Experi-

ence for Undergraduates (REU) program RUSIS at Indiana University during the summer of 2023,

have provided valuable insights into the theoretical performance of three-sample estimators in both

censored and uncensored data scenarios. The generated data, drawn from diverse distributions,

served as the testing ground for the four estimators described earlier.

In this research, we delved into the intricacies of a three-sample scenario, exploring both cen-

sored and uncensored data. We engaged the same estimators described above in rigorous com-

parisons, aiming to identify the one that performed best. Our observations led us to an intriguing

conclusion: in the realm of uncensored data, no single estimator emerged as the unequivocal “cham-

pion." However, when dealing with right-censored data, a compelling victor did emerge, and it was

none other than the simplest of the estimators, Estimator 2. This finding underscores the practical

utility of straightforward methodologies in scenarios where data is subject to right censoring, a

common reality in real-life datasets.

In the context of the uncensored case, Estimator 2 exhibited notable shortcomings in estimating
ÇÑG and ÇÑH , although it performed well for ÇÑF . However, for right censored data, Estimator 2 emerged

as the consistently superior choice across various simulated distributions. This finding carries prac-

tical significance, particularly when applied to real datasets where right censoring is commonplace.

The simplicity of Estimator 2, involving the maximization of Kaplan-Meier functions and treating

one of them as a known distribution, demonstrated robust performance in scenarios where data

is subject to censoring. These insights lay the groundwork for a more nuanced understanding of

estimator performance in real-world applications.

Given the prevalence of censoring in real-life datasets, the prospects for a simplified estimator

to excel o�er exciting possibilities for future applications and investigations.

In the research that is the focus of this study, it was expected that applying these estimators to

real-life data will have similar results as real data is more often than not censored.
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5 Methods

The data for this study was obtained from real-world cases involving three distinct populations: non-

Hispanic Black, non-Hispanic White, and Hispanic individuals. The data pertains to the survival

rates of various types of cancer within these populations. The data was collected from the National

Cancer Institute’s Surveillance, Epidemiology, and End Results Program (SEER) (“Surveillance,

Epidemiology, and End Results (SEER) Program”, 2023). The key variables of interest were the

survival times for individuals within each population, with stratification by race and cancer type.

Empirical survival models were fitted to the data. These models are essential for understanding

the baseline survival probabilities for each population and cancer type based on the raw data.

The four di�erent estimators described above were then applied to approximate the survival

functions for the three populations. Bias and Mean Squared Error (MSE) were then computed to

assess the performance of each estimator. These measures were used to evaluate the extent to which

each estimator deviates from the true survival probabilities given by the data.

Bias was calculated as the di�erence between the estimated survival probabilities and the true

survival probabilities for each estimator, as follows:

Bias = ÇÑF * ÑF
<
. (17)

The bias provides insight into the direction and magnitude of estimation errors.

The Mean Squared Error (MSE) was used to quantify the overall accuracy of the estimators

by considering both bias and variance. It was calculated as the mean of the squared di�erences

between the estimated and true survival probabilities, as follows:

MSE = 1
n

n…
i=1

( ÇÑF (x
i
) * ÑF

<(x
i
))2. (18)

The purpose of using Mean Square Error is to quantify the accuracy of the estimators by considering

bias and variance.
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To visually represent the findings, various graphs and tables were generated. These visualiza-

tions include Empirical Survival Graphs displaying empirical survival probabilities for each pop-

ulation and cancer type, Bias Graphs illustrating the bias of each estimator over time, and a table

summarizing the MSE values for each estimator for each cancer.

Based on the results of the bias and MSE calculations and the visualizations, conclusions were

drawn regarding which estimator provided the best fit for the survival data within the studied pop-

ulations.

6 Results

This section delves into an analysis of the performance of the four distinct estimators in this study.

For a visualization of the original empirical survival data for each cancer type, see the Appendix.

This section investigates the estimators’ e�cacy in approximating survival functions. The goal is

to decide which estimator emerged as the optimal fit for the survival data in the studied populations.

6.1 Bones and Joint Cancer

Hispanic Non-Hispanic Black Non-Hispanic White

Estimator 1 0.00091 0.00000 0.00091

Estimator 2 0.00000 0.00000 0.00364

Estimator 3 0.00000 0.00000 0.00364

Estimator 4 0.18192 1.53432 1.06273

Table 1: Table representing Mean Square Error (MSE) values for all estimators within the
Bone/Joint Cancer category across the three populations: Non-Hispanic Black, Hispanic, and Non-
Hispanic White.

We first studied survival rates for cancer of the bones and joints. The raw estimator results have

been included in the appendices for each cancer type. For Bone and Joint Cancer estimator-based

survival functions, see Figure 7 in the Appendix. The examination of Bone and Joint Cancer data
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reveals Estimator 4 as exhibiting the highest bias across all three populations, which is evident in

Figure 1, indicating a notable magnitude of estimation errors. Concurrently, Estimator 4 records

the highest MSE values, depicted in Table 1, demonstrating its suboptimal performance in all esti-

mations for this cancer type. Remarkably, Estimator 2 and Estimator 3 share identical MSE values,

as illustrated in Table 1, and exhibit parallel bias patterns across the three racial populations, as

seen in Figure 1. Meanwhile, Estimator 1 showcases low bias and MSE values, making it chal-

lenging to definitively determine its superiority over Estimators 2 and 3 in this context. Estimator

4 emerges as the least accurate, exhibiting the highest bias and MSE values across all three popu-

lations. In contrast, Estimator 2 and Estimator 3, despite their simplicity, demonstrate comparable

and superior performance, making it challenging to definitively declare one as most superior.

(a) (b)

(c)

Figure 1: Visual representation of bias trends for all estimators within the Bone/Joint Cancer cat-
egory across distinct populations, including (a) Non-Hispanic Black, (b) Hispanic, and (c) Non-
Hispanic White groups.

15



6.2 Eye and Orbit Cancer

Hispanic Non-Hispanic Black Non-Hispanic White

Estimator 1 0.15750 0.38568 0.35386

Estimator 2 0.05909 1.54273 0.00000

Estimator 3 0.01477 1.27023 0.01477

Estimator 4 0.41586 2.24659 3.77091

Table 2: Table representing Mean Square Error (MSE) values for all estimators within the Eye/Orbit
Cancer category across the three populations: Non-Hispanic Black, Hispanic, and Non-Hispanic
White.

The examination of data related to Eye and Orbit Cancer yielded intriguing findings. For Eye

and Orbit Cancer estimator-based survival functions, see Figure 8 in the Appendix. Estimator 3

exhibited the lowest MSE value for the Hispanic Group, Estimator 1 achieved the lowest MSE

for the Non-Hispanic Black Group, and Estimator 2 secured the lowest MSE for the Non-Hispanic

White Group, as detailed in Table 1. Likewise, the bias analysis in Figure 2 highlights that Estimator

1 displayed the least bias for the Non-Hispanic Black Group, Estimator 3 exhibited the least bias

for the Hispanic Group, and Estimator 2 demonstrated a bias of 0 for the Non-Hispanic White

Group. Overall, determining the most superior performer among the estimators in this context

proves challenging. In this case, each estimator exhibits strengths, with Estimators 1, 2, and 3

showcasing low bias and competitive MSE values across di�erent racial groups. Determining a

singular superior performer proves challenging.
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(a) (b)

(c)

Figure 2: Visual representation of bias trends for all estimators within the Eye/Orbit Cancer cat-
egory across distinct populations, including (a) Non-Hispanic Black, (b) Hispanic, and (c) Non-
Hispanic White groups.

6.3 Lip Cancer

Hispanic Non-Hispanic Black Non-Hispanic White

Estimator 1 1.19864 1.19864 0.00000

Estimator 2 4.79455 0.00000 0.00000

Estimator 3 1.19864 1.19864 0.00000

Estimator 4 7.72647 8.65864 4.98273

Table 3: Table representing Mean Square Error (MSE) values for all estimators within the Lip
Cancer category across the three populations: Non-Hispanic Black, Hispanic, and Non-Hispanic
White.

For Lip Cancer estimator-based survival functions, see Figure 9 in the Appendix. The examination

of Lip Cancer data also consistently highlights Estimator 4 as the least accurate among the four

estimators, evident in the pronounced bias depicted in Figure 3. Table 3 further reinforces this
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observation, indicating that Estimator 4 exhibits the highest MSE values across all three racial

populations, a�rming its inferior performance. Conversely, MSE values in Table 3 showcase a

competitive scenario among Estimators 1, 2, and 3, with ties for the smallest MSE within specific

racial groups. Notably, the first three estimators consistently exhibit minimal bias. Despite this

result, pinpointing the superior performer remains challenging in this context.

Lip Cancer data consistently highlights Estimator 4 as the least accurate, with the highest bias

and MSE values. Estimators 1, 2, and 3, on the other hand, present a competitive scenario with

minimal bias, making it di�cult to pinpoint a clear superior performer.

(a) (b)

(c)

Figure 3: Visual representation of bias trends for all estimators within the Lip Cancer category
across distinct populations, including (a) Non-Hispanic Black, (b) Hispanic, and (c) Non-Hispanic
White groups.
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6.4 Meningioma of the Brain

Hispanic Non-Hispanic Black Non-Hispanic White

Estimator 1 0.21295 0.21318 0.00023

Estimator 2 0.85182 0.00091 0.00000

Estimator 3 0.85182 0.00023 0.00023

Estimator 4 1.09909 1.68222 1.27545

Table 4: Table representing Mean Square Error (MSE) values for all estimators within the Menin-
gioma Cancer category across the three populations: Non-Hispanic Black, Hispanic, and Non-
Hispanic White.

For Meningioma estimator-based survival functions, see Figure 10 in the Appendix. The examina-

tion of Meningioma of the Brain data aligns with prior analyses of various cancer types, highlighting

Estimator 4 as the most biased among the four estimators, evident in Figure 4. Notably, there is a

pronounced increase in bias from Estimator 1 for the Black and Hispanic Groups, and from Esti-

mator 3 for the Hispanic Group. Regarding MSE values, depicted in Figure 4, Estimator 1 exhibits

the lowest MSE for the Hispanic Group, Estimator 3 for the Black Group, and Estimator 2 for the

White Group. Despite these insights, determining the superior-performing model remains di�cult

in this instance.

The analysis of Meningioma of the Brain further underscores the variability in estimator per-

formance. Estimator 4 stands out as the most biased, yet discerning the overall best-performing

model is di�cult.
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(a) (b)

(c)

Figure 4: Visual representation of bias trends for all estimators within the Meningioma category
across distinct populations, including (a) Non-Hispanic Black, (b) Hispanic, and (c) Non-Hispanic
White groups.

6.5 Mesothelioma

Hispanic Non-Hispanic Black Non-Hispanic White

Estimator 1 2.48477 2.48477 0.17818

Estimator 2 0.00000 9.93909 0.00000

Estimator 3 0.00000 9.93909 0.00000

Estimator 4 4.13384 8.39250 2.50886

Table 5: Table representing Mean Square Error (MSE) values for all estimators within the Mesothe-
lioma category across the three populations: Non-Hispanic Black, Hispanic, and Non-Hispanic
White.

The examination of Mesothelioma case results, as depicted in Figure 5, introduces intriguing dy-

namics. For Mesothelioma estimator-based survival functions, see Figure 11 in the Appendix.

There is a notable surge in bias from Estimator 1 for all three racial groups, accompanied by a sim-
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ilar trend from Estimators 2 and 3 for the Black Group. In contrast, Estimators 2 and 3 maintain a

consistently bias-free profile for the White and Hispanic groups.

Regarding Mean Squared Error (MSE) values highlighted in Table 5, both Estimator 2 and

Estimator 3 exhibit an MSE of 0 for the Hispanic and White Groups, while Estimator 1 claims the

lowest MSE for the Non-Hispanic Black Group. Meanwhile, Estimator 4 consistently registers the

highest MSE values across all racial categories.

Mesothelioma case results introduce intriguing complexities, with Estimator 1 exhibiting a no-

table bias surge. However, Estimators 2 and 3 maintain consistent bias-free profiles for certain

demographic subsets.

(a) (b)

(c)

Figure 5: Visual representation of bias trends for all estimators within the Mesothelioma category
across distinct populations, including (a) Non-Hispanic Black, (b) Hispanic, and (c) Non-Hispanic
White groups.
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6.6 Renal Pelvis Cancer

Hispanic Non-Hispanic Black Non-Hispanic White

Estimator 1 0.06409 0.06045 0.00364

Estimator 2 0.24182 5.06364 0.01455

Estimator 3 0.06045 0.06045 0.00000

Estimator 4 1.18525 1.18591 3.49273

Table 6: Table representing Mean Square Error (MSE) values for all estimators within the Renal
Pelvis Cancer category across the three populations: Non-Hispanic Black, Hispanic, and Non-
Hispanic White.

For Renal Pelvis Cancer estimator-based survival functions, see Figure 12 in the Appendix. In

Table 6, we observe that Estimator 3 exhibits the lowest Mean Squared Error (MSE) for the Hispanic

Group, while Estimators 1 and 3 share the lowest MSE for the Black Group. Additionally, Estimator

3 attains the lowest MSE value for the White Group. An intriguing result emerges in this scenario

- Estimator 4, while not securing the highest MSE values across all categories, still falls short of

being considered a top-performing model.

Regarding bias, as illustrated in Figure 6, Estimator 4 still is remarkably biased. Conversely,

Estimators 1, 2, and 3 exhibit biases that hover relatively close to zero throughout the duration of

the White Group analysis. Notably, Estimator 2 displays pronounced bias for the Black Group and

experiences a substantial spike in bias for the Hispanic Group, introducing further nuances to the

interpretation of model performance.

22



(a) (b)

(c)

Figure 6: Visual representation of bias trends for all estimators within the Renal Pelvis Cancer
category across distinct populations, including (a) Non-Hispanic Black, (b) Hispanic, and (c) Non-
Hispanic White groups.

7 Conclusion

In conclusion, the comparative analysis of the four estimators - Estimator 1, Estimator 2, Esti-

mator 3, and Estimator 4 - has provided valuable insights into their performances across di�erent

cancer types. Notably, Estimator 2 and Estimator 3 consistently demonstrated good performance,

showcasing the lowest Mean Squared Error (MSE) values and minimal bias across multiple cancer

categories.

An intriguing observation arises from the performance of Estimator 2 and Estimator 3, which,

despite being the simpler estimators in the set, outperformed their more complex counterparts. This

result highlights the importance of considering the trade-o� between complexity and performance

in selecting estimators for survival analysis in cancer research.

Furthermore, the performance of Estimator 2 in this study aligns with its consistent perfor-

mance in preliminary research involving simulations at RUSIS@IU, underscoring its reliability
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and robustness across real-world data and simulated scenarios.

However, the comparative analysis also reveals the challenges in definitively declaring a single

superior estimator across diverse cancer types. The nuanced performances and intricate dynamics

observed underscore the need for further exploration, accounting for various factors influencing

estimator performance. This study contributes to understanding estimator behaviors in cancer re-

search, and could hold a role in refining future methodologies in the field.

While these results provide valuable insights, it is crucial to acknowledge the necessity for

additional research in this area. The complexities of cancer data necessitate a comprehensive ex-

ploration of various factors influencing estimator performance, including dataset characteristics,

sample size, and specific cancer types. Additionally, an in-depth investigation into the underlying

mechanisms contributing to the superior performance of Estimator 2 could unveil novel avenues

for refining survival analysis methodologies.

Ultimately, this study adds to the growing body of knowledge in survival analysis for cancer

research and hopefully serves as a catalyst for future investigations. The findings of this study set the

stage for more nuanced and sophisticated approaches to survival estimation, with the overarching

goal of improving prognostic accuracy and advancing our understanding of cancer outcomes.
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Appendix

(a) (b)

(c) (d)

(e)

Figure 7: Visual representation of (a) the empirical survival functions from the raw data for the
Bone/Joint Cancer case, and the new survival functions created after (b) Estimators 1, (c) 2, (d) 3,
and (e) 4 were applied.
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(a) (b)

(c) (d)

(e)

Figure 8: Visual representation of (a) the empirical survival functions from the raw data for the
Eye/Orbit Cancer case, and the new survival functions created after (b) Estimators 1, (c) 2, (d) 3,
and (e) 4 were applied.
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(a) (b)

(c) (d)

(e)

Figure 9: Visual representation of (a) the empirical survival functions from the raw data for the Lip
Cancer case, and the new survival functions created after (b) Estimators 1, (c) 2, (d) 3, and (e) 4
were applied.
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(a) (b)

(c) (d)

(e)

Figure 10: Visual representation of (a) the empirical survival functions from the raw data for the
Meningioma case, and the new survival functions created after (b) Estimators 1, (c) 2, (d) 3, and
(e) 4 were applied.
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(a) (b)

(c) (d)

(e)

Figure 11: Visual representation of (a) the empirical survival functions from the raw data for the
Mesothelioma case, and the new survival functions created after (b) Estimators 1, (c) 2, (d) 3, and
(e) 4 were applied.
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(a) (b)

(c) (d)

(e)

Figure 12: Visual representation of (a) the empirical survival functions from the raw data for the
Renal Pelvis Cancer case, and the new survival functions created after (b) Estimators 1, (c) 2, (d)
3, and (e) 4 were applied.
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