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ABSTRACT 

 

 

 

USING SOCIAL MEDIA DATA IN DEMAND FORECASTING: 

THE CASE OF WALMART 

 

 

Aybike Akıcı 

 

St. Mary's University, 2018 

 

Supervising Professor: Rafael Moras, Ph.D., P.E. 

 

 

We describe a fully empirical study on demand forecasting, that is applicable to any real-

world data. This is a hands-on case study on the power of social media in demand forecasting. We 

implement a Box-Jenkins methodology with exogenous variables, namely ARIMAX, to forecast 

Walmart’s future sales. The social media components that we utilize are the number of likes and 

comments on the official Facebook page of Walmart. The details of the empirical investigation for 

fitting the best ARIMAX model are presented, and the results are discussed. With this thesis, we 

demonstrate that social media information should be considered in forecasting, as it is very 

valuable for any company when performing demand planning, and inventory management. 
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CHAPTER 1 

 

INTRODUCTION 

 

Demand forecasting is an important industrial engineering/operations management topic 

because forecasting demand accurately and effectively tends to lead to higher customer satisfaction 

while simultaneously optimizing warehousing and inventories by keeping the right amount of the 

right product on shelves. In today’s highly interconnected world, it is a clearly visible fact that the 

relationship between retailers and consumers has been transformed by social media. Brands can 

use social media data that enable them to optimize their buying and selling processes in ways that 

both the brands and customers could benefit from. By 2011, more than 83 percent of the Inc. 500 

companies used at least one of the social media platforms (Hameed, 2011). Besides, consumers 

affect the purchasing decisions of their networks by expressing their preferences in social media 

sites such as Facebook and Twitter. According to a study, 74 percent of consumers reported that 

they use social media to make decisions on purchasing (Barbera, 2016). This finding typifies the 

impact of social media on retailing decisions. 

Traditional forecasting methods generally utilize solely historical sales data to predict 

future demand. A problem with this plain approach is that it does not appreciate the importance of 

“shocks” arising from factors such as sudden changes in customer satisfaction and sentiments, 

marketing campaigns, celebrity endorsements, scandals, and the like, on future sales. These factors 

can significantly shift the future sales trajectory, which the traditional model would be unable to 

capture, because simply it does not include such elements.  

In order to include the effects of the aforementioned external shocks, social media data 

may be taken into consideration, since this source of information can represent a composition of 
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these sudden changes. People communicate their ideas and feelings about various brands by 

tweeting in Twitter, commenting and liking on Facebook, following and liking on Instagram and 

so on. Hence, one needs to take into account the social media component besides the historical 

sales data to be able to perform forecasting more accurately. 

Contrary to the widespread Autoregressive Integrated Moving Average (ARIMA) models, 

where only the past records of the dependent variable and residual terms are used, we implemented 

the Box-Jenkins methodology with the usual auto regressive and moving average components, as 

well as exogenous variables, namely ARIMAX to forecast Walmart’s sales. Exogenous 

explanatory variables are independent variables other than the past records of the dependent 

variable and residuals, which, in our case, were social media characteristics. The social media 

components were the number of likes and comments on the official Facebook page of Walmart. 

The idea that we explored was, in a time-series fashion, whether Walmart sales increase or 

decrease in conjunction with the number of Facebook likes and comments. This way, Facebook 

activity became the X in the ARIMAX, and we sought its significance when the full ARIMA 

components were present. 

In the next chapter, we discuss literature relevant to the problem at hand. In Chapter 3, we 

present the methodology that we implemented. In Chapter 4, we explain the details of the data and 

prepare them for the ARIMAX modeling. Once the data are fully clean, we perform an empirical 

investigation in Chapter 5. We discuss the results of this investigation in Chapter 6. All 

supplementary materials are presented in Appendices. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

The idea of utilizing social media data in explaining demand and sales is very new and has 

been attracting significant attention in recent years. Therefore, the empirical literature 

incorporating social media variables into a demand forecasting framework is still thin. The ground-

breaking study in the related literature has been Asur and Huberman (2010). They regard social 

media as a form of collective wisdom and prove that it can predict the future (movie box-office 

revenues, in their specific case) better than the conventional gold standards in the industry. Most 

of the work in the operations management area studying social network effects is based on 

theoretical models. Candogan et al. (2012) consider the effect of the social network in explaining 

consumption behavior of individuals. Zhang et al. (2015) study the managing of services in the 

presence of social interactions. Papanastasiou and Savva (2014) present pricing strategies for new 

products when customers decide to purchase later to learn more information about the products. 

Behesti-Kashi et al. (2015) present a very comprehensive literature of the usage of social media in 

forecasting, with a special focus in sales forecasting of fashion industry. Chen et al. (2011) study 

the evolution of the relationship between social media and sales, and find that the relationship is 

different between the early and mature stages of internet usage. Stephen and Galak (2012) compare 

the effectiveness of two types of “earned media”, namely the traditional (e.g., publicity and press 

mentions) and social (e.g., blog and online community posts) in affecting sales. They find that the 

impact of the social earned media is larger than the traditional one, moreover, social earned media 

drives traditional earned media activity. In a very recent paper, John et al. (2017) take a 

controversial position and question whether “liking” a brand on Facebook causes a person to view 
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it more favorably, and their answer is negative. In a recent paper that shares the same motivation 

with us, Kumar et al. (2016) examine the effect of firm-generated content (FGC) in social media 

on three key customer metrics: spending, cross-buying, and customer profitability. They use an 

extensive novel data set and find that after accounting for the effects of television advertising and 

e-mail marketing, FGC has a positive and significant effect on customers behavior. In their 

pioneering empirical work, Cui et al. (2017) investigate whether using publicly available social 

media data can improve the accuracy of daily sales forecasts. They implement various models to 

forecast sales and find that using social media information yields a statistically significant 

improvement in the out-of-sample forecast accuracy, with relative improvements ranging from 13 

percent to 23 percent over different forecast horizons. Even more recently, Boone et al. (2018) 

claim that another type of user-generated content (customer search data, specifically one obtained 

from Google Trends) can be used to reduce out-of-sample forecast accuracy. They support Cui et 

al. (2017) by showing that adding customer search data to time series models improves their 

accuracy. 

The study presented in this thesis, in which we study the empiricial value of social media 

information in forecasting the future demand, resembles Cui et al. (2017)’s work. It differs from 

theirs in terms of the methods we use and the dramatically different characteristics of the data sets 

we considered. 
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CHAPTER 3 

 

METHODOLOGY 

 

We followed the Box-Jenkins methodology to fit an analytical model to the time series. 

With various versions, such as Autoregressive Moving Average (ARMA), Autoregressive 

Integrated Moving Average (ARIMA), Seasonal ARIMA (SARIMA), Vector ARIMA 

(VARIMA), Fractional ARIMA (FARIMA), ARIMA with exogenous regressors (ARIMAX), 

Setc., the Box-Jenkins methodology is a well-established way of understanding and forecasting 

time series. We employed an ARIMAX model in our thesis. The basis of the ARIMAX model is 

the autoregressive moving average (ARMA) models, which were first developed by Box and 

Jenkins in 1970 (Box et al., 2008). Descriptions of the ARMA, ARIMA, and ARIMAX models 

follow. 

The ARMA model consists of two building blocks, namely the AR and MA components, 

as its name suggests. For a series 𝑌𝑡, the AR component refers to its relationship with its past 

values. This formulates the level of its current observations in terms of the level its lagged 

observations. The justification of the model stems from the fact that some time series mark the 

evolution of a phenomenon that evolves according to its history. For instance, a smoker may be 

guessed to have smoked yesterday and is expected to smoke tomorrow as well. Similarly, a factory 

with a high level of throughput is very likely to have produced large amounts yesterday and is 

expected to produce similar amounts tomorrow too. This serial dependence concept is formulated 

by the auto regressive (AR) model (Hyndman and Athanasopoulos, 2012). A description of the 

model follows. 
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The notation AR(p) refers to the autoregressive model of order p. The AR(p) model is 

represented as 

𝑌𝑡 = 𝑐 + ∑ 𝜑𝑖

𝑝

𝑖=1

𝑌𝑡−𝑖 + 𝜖𝑡 

where 𝜑1,…, 𝜑𝑝 are the parameters of the model, c is a constant, and 𝜖𝑡 is the residual.  

 The second building block refers to the fact that the observations of a random variable at 

time t are not only affected by the shock at time t, but also the shocks that occur before time t. 

Thus, if we observed a negative shock to the production of an industry through new tariffs on 

imported raw materials, new regulations on labor market, or an unanticipated entry of a big 

competitor to the market, then we would expect that this negative effect to affect the production in 

the future. This concept can be represented by a moving average (MA) model (Hyndman and 

Athanasopoulos, 2012), which is described next. 

 The notation MA(q) refers to the moving average model of order q: 

𝑌𝑡 = 𝜇 + 𝜖𝑡 + ∑ 𝜃𝑖

𝑞

𝑖=1

𝜖𝑡−𝑖 

where 𝜃1,…, 𝜃𝑞 are the parameters of the model, 𝜇 is the expectation of 𝑌𝑡 (often assumed to equal 

0), and the 𝜖𝑡,…, 𝜖𝑡−1 are again white noise error terms. 

The general autoregressive moving average process of orders p and q or ARMA(p,q) 

combines the AR and MA models into a unique representation. The ARMA process of orders p 

and q is defined as  

𝑌𝑡 =  𝑐 + 𝜖𝑡 + ∑ 𝜑𝑖

𝑝

𝑖=1

𝑌𝑡−𝑖 + ∑ 𝜃𝑖

𝑞

𝑖=1

𝜖𝑡−𝑖 

The ARMA formulation draws a more complete picture than the individual AR and MA 
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models, because in actuality we rarely observe a random variable depending exclusively on either 

its past values or its past shocks. 

ARMA models are vulnerable to factors such as trends and seasonality. An example is two 

completely unrelated time series that happen to either increase over time or exhibit seasonality 

which could falsely be identified to be related. A stationary time series is one whose properties do 

not depend on the time at which the series is observed (Diebold, 2007). It is important to adjust 

the series for seasonality or trend behavior because the seasonality and trend will affect the values 

of the time series at different times.  Box et al. (2008) also claimed that nonstationary data could 

be turned to stationary data by differencing the series. Differencing consists in calculating the 

differences between consecutive observations. If we combine differencing with autoregression and 

a moving average model, we obtain an autoregressive integrated moving average (ARIMA) model. 

According to Hyndman and Athanasopoulos (2012), the model can be written as 

𝑌′
𝑡 =  𝑐 + 𝜖𝑡 + ∑ 𝜑𝑖

𝑝

𝑖=1

𝑌′
𝑡−𝑖 + ∑ 𝜃𝑖

𝑞

𝑖=1

𝜖𝑡−𝑖 

where 𝑌′
𝑡 is the differenced series. The formulation is called an ARIMA(p,d,q) model, where 

p = order of the autoregressive part 

d = degree of first differencing involved 

q = order of the moving average part 

 The significance of ARIMAX models is that they afford the ability to account for the 

impact of external variables on a time series. ARIMAX models consist of ARIMA, that is, the 

history of a series explained by its AR and MA components; and the X, which represents the 

external variables that we believe to have an effect on our time series. In short, an ARIMAX model 

simply adds in the covariate on the right-hand side (Hyndman, 2010): 
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𝑌𝑡 =  𝛽𝑋𝑡 + 𝑐 + 𝜖𝑡 + ∑ 𝜑𝑖

𝑝

𝑖=1

𝑌𝑡−𝑖 + ∑ 𝜃𝑖

𝑞

𝑖=1

𝜖𝑡−𝑖 

where 𝑋𝑡 is a causal/exogenous variable at time t, and β is its coefficient. 

In the next chapter, we discuss the details of data preparation for the ARIMAX modelling. 
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CHAPTER 4 

 

DATA PREPARATION 

 

 4.1. Gathering the data 

The data set utilized in this thesis is the weekly sales series of Walmart from February 2010 

to October 2012 for 45 stores located across the US. The data are publicly available at 

https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting. Also available is the store 

size variable. An initial exploration of the aggregate (45 stores combined) sales data reveals the 

behavior described in Figure 1.  

 

Figure 1. Aggregate weekly Walmart sales data over time 

Every Walmart store has 99 departments. We firstly aggregated all department sales data 

for every store to obtain one sales data point per store per week. The store size variable ranged 

https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting
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between 34,875 and 219,622 square feet, with a mean of 130,287 square feet. We believed that the 

store area might play a role in the behavior of sales series, i.e. stores of different sizes might react 

differently to factors such as holidays, social media stimulus, etc. Therefore, we incorporated this 

information into the analysis by grouping the stores into four buckets: Large, Upper Medium, 

Lower Medium, and Small and estimating four models for each group. This grouping scheme is 

illustrated in Table 1. A histogram that reflects the distribution of the stores in terms of their sizes 

is furnished in Figure 2. 

Bins* Frequency Group 

<50 10 Small 

50-75 2 Lower Medium 

75-100 2 Lower Medium 

100-125 7 Lower Medium 

125-150 4 Upper Medium 

150-175 5 Upper Medium 

175-200 2 Upper Medium 

>200 13 Large 

*in thousand sq. ft     

 

Table 1. The groups of the stores 
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Figure 2. Distribution of the stores 

We separated whole sales data into four groups, according to store type. The sales graphs 

for each store type are displayed in Figures 3 to 6, respectively.  

Figure 3. Weekly Walmart sales data for the large stores 
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Figure 4. Weekly Walmart sales data for the upper medium stores 

 

Figure 5. Weekly Walmart sales data for the lower medium stores 
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Figure 6. Weekly Walmart sales data for the small stores 

Facebook data was the social media component considered in this thesis. The company’s 

official Facebook account is https://www.facebook.com/WalmartcomUS/. The explanatory 

variables consist of the time series of number of likes, and comments for posts. The advantage of 

using Facebook is that it offers a public application programming interface (API) to access the 

complete data set of activities of Walmart on Facebook. This Facebook API 

(https://developers.facebook.com/) gives an access token to anybody who wants to query it, and 

the data shown on each page of API includes the date, number of likes, and number of comments 

of every single post for the specified time period. In Figure 7, we provide an example of Facebook 

API page. We attained the Facebook activity data through Facebook API using the Python 

programming language, following the techniques clearly discussed by Russell (2014). A sample 

of final data file is shown in Appendix 1. 

 

https://www.facebook.com/WalmartcomUS/
https://developers.facebook.com/
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Figure 7. A sample Facebook API page 

We noticed that at the beginning of the time span we studied, the number of likes and 

number of comments were low, and that they increased over time. The company’s activity was 

rare, too. For instance, Walmart published an average of one post every two days at the beginning 

of the study period, whereas later there could be up to five daily posts. Hence, we detected a scale 

effect that reflects a behavior of a higher volume of Facebook activity at the end. We removed the 

scale effect by taking the average number of likes and comments per post into consideration. In 

Figures 8 and 9 we show the behavior of the average weekly number of likes and comments from 

February 2010 to October 2012, respectively. The next step was to address issues such as trends, 

unit roots, and seasonality. 
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Figure 8. Average weekly number of likes 

Figure 9. Average weekly number of comments 

 4.2. Data analysis 

The analysis of seasonality, trends, and cycles are crucial aspects in time series analysis. 

These components capture the historical patterns in the time series. One series does not have to 
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have all three components necessarily, but if they exist, they should be removed before analyzing 

the series. Seasonal components are the fluctuations in the data related to calendar cycles. Trend 

refers to an overall pattern of the series. Cycles are decreasing and increasing patterns that are not 

seasonal (Diebold, 2007). The process of removing these components from the series is referred 

to as decomposition. Once we know the patterns seasonality, trends, and cycles, we should check 

if the series is stationary or not.  

Fitting an ARIMAX model requires the series to be stationary (Hyndman, 2010). A series 

to be classified as stationary should meet the condition that its mean, variance, and autocovariance 

are time invariant. As the ARIMAX model uses previous lags of series to model its behavior 

besides an exogenous variable, modeling a stable series which has consistent properties provides 

less uncertainty (Hyndman and Athanasopoulos, 2012). We used the Augmented Dickey-Fuller 

Test (ADF) to check for stationarity. The null hypothesis is that the series is non-stationary; or, in 

other words, integrated, mathematically, the null hypothesis is that there is a unit-root in the series. 

The alternative hypothesis is that the series is stationary. Following the ADF procedure, we tested 

whether the change in Y can be explained by lagged values and a linear trend (Hyndman and 

Athanasopoulos, 2012). If the contribution of the lagged value to the change in Y is zero, then the 

lagged value will have no effect on the change in Y, which will imply that the series is not going 

to be mean-reverting from today to tomorrow. Therefore, the series is going to be deemed non-

stationary. 

We used the adf.test function on R to test for stationarity of all the series. In the summary 

tables that we provide, it suffices to check whether the resulting p-values of the test are less or 

greater than the significance level of 0.05. The former means stationarity, and the latter, non-

stationarity.  
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Non-stationary variables are not allowed to enter the statistical model as is. They need to 

be made stationary through a transformation of differencing or log-differencing, and the 

transformed series should be tested again by the ADF test to make sure that they become stationary. 

We first tested the stationarity of the aggregate weekly sales series. As can be seen from 

Figure 10, the ADF test resulted in a conclusion of stationarity. However, an analysis of the graph 

(Figure 1) reveals the presence of outliers that do not obey a stationary behavior. Therefore, the 

test merely tolerates the existence of these outliers, which distorts stationarity. 

We tended to remove these outliers, but before that, we checked whether there was 

seasonality in the data, which would give us the possibility of eliminating them through seasonal 

differencing. We examined the Autocorrelation Function (ACF) plot of the series (Figure 11). The  

 

Figure 10. ADF test result for weekly Walmart sales for all stores 

ACF plot is a graphical representation of the autocorrelation coefficients of a time series, which 

plots the correlations between its current and lagged values. This depicts a measure of the linear 

relationship of a series with its past records (Hyndman and Athanasopoulos, 2012). 



 
18 

 

 

Figure 11. ACF plot for weekly Walmart sales for all stores 

The sales graph appeared to spike around the same time every year, which led us to suspect 

annual seasonality. Even though we see co-movement between the Christmas season sales, this is 

not enough for annual seasonality. An annual seasonality is said to exist if the same months or 

seasons co-move during the entire year, between two separate years. For example, we would say 

that the series had seasonality if the sales on February 2010 were correlated with that on February 

2011, March 2010 sales were correlated with March 2011 sales, and so on. Thus, seasonality would 

result in an autocorrelation behavior with lag 12. The ACF plot did not reveal that kind of a pattern, 

which suggested that there was no seasonality. This meant that the same months of different years 

do not correlate, and the annual spikes in the sales series only pertain to the Christmas season. 

Therefore, the Christmas season merely constituted an outlier behavior. In conclusion, since the 

high Christmas season sales were not a part of seasonality and were so sparse that the ADF test 

did not notice them, we opted to remove those data points from the data series. 

As we mentioned before, the application of an ARIMAX model requires a series to be 
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stationary. In the next section we describe whether the sales series for all store types and weekly 

average number of likes and comments were stationary. 

 

4.3. Checking the data for stationarity 

We performed separate ADF tests for sales series for every store type, and average number 

of likes and comments series to check stationarity. 

When we performed ADF test for sales data for large stores, we obtained the following 

results (Figure 12). Since the p-value (0.01) was less than 0.05, the null hypothesis was rejected in 

favor of stationarity.  

The result of ADF test for sales data of upper medium stores is shown in Figure 13. Again, 

since the p-value (0.01) was less than 0.05, we reject the null hypothesis. Similarly, we concluded 

that the time series for lower medium stores was stationary, and that for small stores it was not 

stationary. 

 

 

Figure 12. ADF test result for the large stores 

 

Figure 13. ADF test result for the upper medium stores 



 
20 

 

When we implemented ADF test for the average number of likes data, we obtained the 

results depicted in Figure 14. Since the p-value (0.99) was greater than 0.05, we failed to reject the 

null hypothesis, and concluded that the average number of likes was non-stationary. 

       

 

Figure 14. ADF test result for the average number of likes 

In Figure 15 we show the result of the ADF test for the average number of likes. We failed 

to reject the null hypothesis for the series of average number of comments, as the p-value (0.49) is 

greater than 0.05. On the other hand, sales series for small stores was non-stationary, for that reason 

we had to stationarize the data before starting the actual analysis. 

As the average number of likes and comments series were non-stationary, we must perform 

 

Figure 15. ADF test result for the average number of comments 

a decomposition process to make them suitable for ARIMAX analysis. 

We next discuss the details of decomposition process of series of small store sale, and 

average number of likes and comments. 

We first subtracted the original time series from its lagged series to extract trends or cycles 
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from the data. The original series (𝑌𝑡) was subtracted from its lagged series (𝑌𝑡−𝑛). The formulas 

are as follows (Diebold, 2007):  

Not differencing (d=0)       𝑌𝑡
𝑑  =  𝑌𝑡 

First differencing (d=1)         𝑌𝑡
𝑑  =  𝑌𝑡 −  𝑌𝑡−1 

We attempted to remove the trend through first order differencing for the small store sales, 

and for the average number of likes and comments series. Plots of the differenced series are 

furnished in Figures 16, 17, and 18. As noticed, the trend component of the series was extracted 

and the differenced data (residual) did not show any trend after first-order differencing. The series 

was not found to be stationary on variance as evidenced by the changing levels of variation. Further 

analysis was thus necessary. 

The following equation represents the log transform process (Diebold, 2007): 

Log of sales      𝑌𝑡
𝑙  =  log (𝑌𝑡) 
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Figure 16. Weekly Walmart sales data for the small stores after differencing 

 

Figure 17. Average weekly number of likes after differencing 
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Figure 18. Average weekly number of comments after differencing 

In Figures 19 to 21 we show the output plots for small store sales, and average number of 

likes and comments, respectively. The new series seemed stationary on variance. Differencing and 

log transform operations solved only one part of non-stationary problem separately; the former 

made the series stable on the mean whereas the latter transformed the series to a stationary one on 

variance. To obtain a fully stationary series, both operations must be applied together. 

In order to reconfirm that the series were stationary on mean and variance, we looked at 

the differenced plot for log - transformed series. The mathematical representation of the difference 

log transform process is, according to Diebold (2007), 

1st differencing (d=1) of log of series     𝑌𝑡
′ = log  (𝑌𝑡) − log (𝑌𝑡−1)  

In Figures 22, 23, and 24 we show the plots for the -aforementioned mathematical equation. 

The series seemed stationary on mean and variance. We still needed to determine whether the 

series were indeed stationary by performing an ADF test for on each series. 
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Figure 19. Weekly Walmart sales data for the small stores after log transform 

 

Figure 20. Average weekly number of likes after log transform 
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Figure 21. Average weekly number of comments after log transform 

 

Figure 22. Weekly Walmart sales data for the small stores after differencing and log transform 
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Figure 23. Average weekly number of likes after differencing and log transform 

 

Figure 24. Average weekly number of comments after differencing and log transform 

An ADF test was performed for the differenced and log transformed of (1) the small store 

sales series, (2) the average number of likes, and (3) the average number of comments. In all cases, 
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the tests yielded the conclusion that the series were stationary. The data were deemed suitable for 

ARIMAX analysis, as they satisfied the stationary conditions. The R code for the data preparation 

phase is shown in Appendix 2. Also, the R code for plotting all the figures is displayed in Appendix 

3. 

In Chapter 5, we discuss the details of our ARIMAX investigation. 
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CHAPTER 5 

 

EMPIRICAL INVESTIGATION 

 

5.1. Development of the ARIMAX model 

In this section, we describe the use of the auto.arima() function on R to find the most 

appropriate parameters of an ARIMAX model. The function allows users to automatically produce 

a set of optimal (p, d, q). It achieves this by searching through multiple alternatives and it uses a 

variation of the Hyndman and Khandakar algorithm (Hyndman and Khandakar, 2008) that 

combines unit root tests, minimization of the Akaike Information Criterion (AICc) and Bayesian 

Information Criterion (BIC). In essence, this algorithm optimizes the ARIMA model fit by looping 

over its different specifications, presented in a schematic form in Figure 25. 

The exogenous variables were the average weekly number of likes and the average weekly 

number of comments. As discussed in the data preparation section, we divided the raw sales data 

into four in terms of store sizes. Hence, we performed the ARIMAX analysis for each store type 

data. 

As discussed in the previous chapter, we used the sales data without any differencing or 

log transform operation for the large, upper medium, and lower medium store types, as they were 

stationary. We considered differenced and log transformed versions of the series of sales for small 

stores, the average number of likes and comments, since only these versions achieved stationarity. 

Differencing subtracts the lagged values from the original series, as a result, the number of data 

points is one less than the original one after differencing. As we performed differencing for 

exogenous variables but not for sales, the number of data points in exogenous variables series was 
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Figure 25. General process for forecasting using an ARIMA model 
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one less than the number of data points of the sales series for the large, upper medium and lower 

medium stores. For that reason, in order to eliminate this inequality, we just removed the first data 

point of sales series that were already stationary. 

In conclusion, we needed to set up two different ARIMAX models: one would be for the 

sales series of large, upper medium, and lower medium stores which were already stationary, and 

another one would be for the sales series of small stores which was not originally stationary. 

The ARIMAX model that we set up and tested for small stores is represented with the 

following equation: 

 

𝑌𝑡
′ =  𝛽𝑋𝑡

′ + 𝑐 + 𝜖𝑡 + ∑ 𝜑𝑖

𝑝

𝑖=1

𝑌′𝑡−𝑖 + ∑ 𝜃𝑖

𝑞

𝑖=1

𝜖𝑡−𝑖 

          

where  

𝑌𝑡
′ = 𝑙𝑜𝑔𝑌𝑡 − 𝑙𝑜𝑔𝑌𝑡−1, 

𝑋𝑡
′ =  [𝑙𝑜𝑔𝐿𝑡 − 𝑙𝑜𝑔𝐿𝑡−1 , 𝑙𝑜𝑔𝐶𝑡 − 𝑙𝑜𝑔𝐶𝑡−1 ], 

𝛽 =  [
𝛽1

𝛽2
] 

𝐿𝑡 stands for average number of likes, and  

𝐶𝑡 stands for average number of comments. 

The following equation represents the ARIMAX model that was set up and tested for the 

sales series of large, upper medium, and lower medium stores: 

𝑌𝑡 =  𝛽𝑋𝑡
′ + 𝑐 + 𝜖𝑡 + ∑ 𝜑𝑖

𝑝

𝑖=1

𝑌𝑡−𝑖 + ∑ 𝜃𝑖

𝑞

𝑖=1

𝜖𝑡−𝑖 

where 𝑋𝑡
′ and 𝛽 follow the aforementioned definitions. 
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5.1.1. ARIMAX model for the large stores 

In Table 2 we show the coefficient for an ARIMAX model for the large stores with 

exogenous variables of average number of likes and comments. The results of a coefficient test for 

a z test is also shown in the table. An ARIMA (1,0,0) configuration was recommended with an 

auto regressive term and exogenous variables parameters. In the light of this information, the 

model can be represented by the following formula: 

𝑌𝑡 =  −183836.2(𝑙𝑜𝑔𝐿𝑡 − 𝑙𝑜𝑔𝐿𝑡−1) + 108821.6(𝑙𝑜𝑔𝐶𝑡 − 𝑙𝑜𝑔𝐶𝑡−1) + 21050508.1 + 𝜖𝑡

+ 0.2349𝑌𝑡−1 

Regression with ARIMA(1,0,0) errors  

 

Coefficients: 

         ar1   intercept  average_likes  average_comments 

      0.2349  21050508.1      -183836.2          108821.6 

s.e.  0.0862    117905.5       107238.4          127752.8 

 

     Pr(>|z|)     

ar1               0.006432 **  

intercept        < 2.2e-16 *** 

average_likes     0.086478 .   

average_comments  0.394317   

Table 2. ARIMAX outputs for the large stores 

According to the results, the intercept was significant at 0.1% level of significance, while 

the AR(1) component (which is the lagged value) was significant at 1% level of significance. The 

p-values of coefficients for the average number of likes and comments are 0.086 and 0.394, 

respectively, which means that the average number of comments were not significant at any level, 

and likes were significant only at 10% significance level. 
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5.1.2. ARIMAX model for the upper medium stores 

In Table 3 we show the coefficient for an ARIMAX model for the upper medium stores 

with exogenous variables of average number of likes and comments with the results of a coefficient 

test for a z test. An ARIMA (1,0,2) configuration was recommended with an auto regressive term, 

two moving average terms and exogenous variables parameters. The model can be represented by 

the following formula: 

𝑌𝑡 =  −250071.27(𝑙𝑜𝑔𝐿𝑡 − 𝑙𝑜𝑔𝐿𝑡−1) + 54700.57(𝑙𝑜𝑔𝐶𝑡 − 𝑙𝑜𝑔𝐶𝑡−1) + 12054984.5 + 𝜖𝑡

− 0.7712𝑌𝑡−1 + 1.2955𝜖𝑡−1 + 0.6854𝜖𝑡−2 

The intercept, AR(1), MA(1), and MA(2) coefficients were significant even at 0.1% level of 

significance. The average number of likes was found to have a significant effect on explaining 

sales since it had a p-value of 0.009. The average number of comments turned out to be 

insignificant. 

Regression with ARIMA(1,0,2) errors  

 

Coefficients: 

          ar1     ma1     ma2   intercept  average_likes  average_comments 

      -0.7712  1.2955  0.6854  12054984.5     -250071.27          54700.57 

s.e.   0.0745  0.0727  0.0724    183147.3       96785.38         118373.68 

 

  Pr(>|z|)     

ar1           < 2.2e-16 *** 

ma1           < 2.2e-16 *** 

ma2           < 2.2e-16 *** 

intercept     < 2.2e-16 *** 

avg_likes      0.009773 **  

avg_comments   0.644009   

Table 3. ARIMAX outputs for the upper medium stores 
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5.1.3. ARIMAX model for the lower medium stores 

In Table 4 we show the coefficient for an ARIMAX model for the lower medium stores 

with exogenous variables of average number of likes and comments. The results of a coefficient 

test are also shown in the table. An ARIMA (2,0,2) configuration was recommended with two auto 

regressive term, two moving average terms and exogenous variables parameters. In light of this 

information, the model can be represented by the following formula: 

𝑌𝑡 =  −270085.24(𝑙𝑜𝑔𝐿𝑡 − 𝑙𝑜𝑔𝐿𝑡−1) + 99127.9(𝑙𝑜𝑔𝐶𝑡 − 𝑙𝑜𝑔𝐶𝑡−1) + 9408152.5 + 𝜖𝑡

− 0.9138𝑌𝑡−1 − 0.1264𝑌𝑡−2 + 1.3953𝜖𝑡−1 + 0.7455𝜖𝑡−2 

Regression with ARIMA(2,0,2) errors  

 

Coefficients: 

          ar1      ar2     ma1     ma2  intercept  average_likes 

      -0.9138  -0.1264  1.3953  0.7455  9408152.5     -270085.24 

s.e.   0.1223   0.1168  0.0818  0.0764   155530.4       92748.12 

 

      average_comments 

               99127.9 

s.e.          111578.2 

 

                   Pr(>|z|)     

ar1               7.852e-14 *** 

ar2                0.278919     

ma1               < 2.2e-16 *** 

ma2               < 2.2e-16 *** 

intercept         < 2.2e-16 *** 

average_likes      0.003591 **  

average_comments   0.374317 

Table 4. ARIMAX outputs for the lower medium stores 
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Again, the intercept, AR(1), MA(1) and MA(2) coefficients all had p-values less than 

0.001, Since the average number of likes had a p-value 0.003, it had a significant effect in 

explaining the model at 1% level of significance. The p-values for AR(2) and average comments 

were greater than 0.10, hence they have no power on explaining the model. 

 

5.1.4. ARIMAX model for the small stores 

In Table 5 we show the coefficients for an ARIMAX model for the small stores with 

exogenous variables of average number of likes and comments with the results of a coefficient test 

for a z test. An ARIMA (3,0,1) configuration was recommended with three auto regressive term, 

one moving average term and exogenous variables parameters. The model can be represented by 

the following formula: 

𝑙𝑜𝑔𝑌𝑡 − 𝑙𝑜𝑔𝑌𝑡−1 =  −0.0010(𝑙𝑜𝑔𝐿𝑡 − 𝑙𝑜𝑔𝐿𝑡−1) − 6𝑒 − 04(𝑙𝑜𝑔𝐶𝑡 − 𝑙𝑜𝑔𝐶𝑡−1) + 𝜖𝑡 − 0.5632𝑌𝑡−1 − 0.5637𝑌𝑡−2

− 0.4761𝑌𝑡−3 − 0.5088𝜖𝑡−1 

According to the results, the autoregressive components up to level 3, and the MA(1) 

coefficients have p-values less than 0.001. It was surprising that the model did not estimate an 

intercept parameter. Also, the p-values for the average number of likes and the average number of 

comments are greater than 0.05, which means that neither exogenous variable has a significant 

effect in explaining the model. 

After specifying the best ARIMAX models whose R code is shown in Appendix 2, we 

conducted a post-modeling diagnosis by checking whether each of the models were statistically 

adequate. Thus, we examined the ACF plot of their residuals, and tested whether the residuals 

were white noise by applying the Ljung-Box test. A description of these tests follows. 
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Regression with ARIMA(3,0,1) errors 

 

Coefficients: 

          ar1      ar2      ar3      ma1  average_likes  average_comments 

      -0.5632  -0.5637  -0.4761  -0.5088        -0.0010            -6e-04 

s.e.   0.1125   0.0970   0.0929   0.1306         0.0065             7e-03 

 

                   Pr(>|z|)     

ar1               5.499e-07 *** 

ar2               6.277e-09 *** 

ar3               2.980e-07 *** 

ma1               9.757e-05 *** 

average_likes        0.8734     

average_comments     0.9344  

Table 5. ARIMAX outputs for the small stores 

5.2. ACF plots for the residuals of the ARIMAX models and Ljung-Box tests 

In this section, we describe the process for ascertaining that no linear relationship exists 

between the lagged values of the residuals of each of the estimated models. If that is the case, we 

can conclude that the residuals are random with no information left for extraction. Equivalently, 

we may infer that the model has been successful in explaining all the variability in the dependent 

variable by utilizing the variability of the independent variables. A series that shows no 

autocorrelation is called “white noise” (Hyndman and Athanasopoulos, 2012). We expected white 

noise residuals for all ARIMAX models that we developed to claim them as good fits. For a white 

noise series, each autocorrelation is expected to be close to zero. To be more specific, we expect 

95 percent of the spikes in the ACF to fall inside the confidence interval (Hyndman and 

Athanasopoulos, 2012). The Ljung-Box test statistics is computed to examine the null hypothesis 

of independence in a given time series (Ljung and Box, 1978). This test is sometimes known as 
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“portmanteau” test. 

In Figure 26 we show the ACF plot of the residuals of the ARIMAX model for the large 

stores. The corresponding result of Ljung-Box test is included in Figure 27. Since the p-value was 

0.2935, we failed to reject the null hypothesis of randomness. 

Figure 26. ACF plot of the residuals of the ARIMAX model for the large stores 

 

Figure 27. Ljung-Box test result for the large stores 

The ACF residual plots of the ARIMAX models for the upper medium, lower medium, and 

small stores are displayed in Figure 28 to 30, respectively. An analysis of the corresponding p-

values reveals that we failed to reject the null hypothesis. Thus, we had enough statistical evidence 

to conclude that all the residuals were random. 
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Figure 28. ACF plot of the residuals of the ARIMAX model for the upper medium stores 

Figure 29. ACF plot of the residuals of the ARIMAX model for the lower medium stores 

Because the residuals of the ARIMAX models for all store types were independent and 

random, we concluded that all ARIMAX models provided an adequate fit to the data. 
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Figure 30. ACF plot of the residuals of the ARIMAX model for the small stores 

In the next chapter, we present the interpretation of the results obtained from the application 

of the aforementioned ARIMAX models. 
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CHAPTER 6 

 

RESULTS AND CONCLUSION 

 

In this section, we discuss the results that we obtained from our ARIMAX investigation 

and present the conclusions and business implications of the study. We furnish recommendations 

for future work as well. 

The decision to separate the Walmart stores into four different sizes and perform a size-

level study appears to have been justified. The small Walmart stores had completely different 

patterns than the others; in particular, they had a nonstationary sales trajectory. This meant that the 

small stores featured a strong growth route. If we lumped all stores together, we would not have 

been able to capture this difference. 

The heterogeneity of store types was also visible from the different ARIMA characteristics 

they were found to have. The large stores had only AR(1) components; upper medium and lower 

medium stores had AR(1), MA(1) and MA(2); finally, the small stores had AR components up to 

level 3, and an MA(1) component. These results appeared to make much sense because the large 

stores tend to be established, only fluctuate around a basis (i.e., intercept term), depend only on 

the past step (hence the finding of AR(1)), and are not frequently subject to past shocks carried 

inside MA components. In contrast, small Walmart stores are usually in the process of growing 

and may be heavily dependent on their past records (hence the finding of AR(1), AR(2), and 

AR(3)). Past shocks are also good indicators of today’s sales for them, as the MA(1) finding 

suggests. We then had the upper medium and lower medium stores, which indeed behave 

somewhere in between large and small stores. Their sales were explained by AR and MA 
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components. It would be impossible to make this heterogeneity visible if we did not perform a 

detailed analysis based on store sizes. Much of this wealth of interpretation would be lost in a 

lumped data set. 

We observed very interesting patterns when it came to the effect of social media on sales. 

The average number of comments did not have a significant impact on sales in any store size level. 

This was a highly anticipated result, given the blend of positive and negative comments that 

appeared to cancel each other out. We didn’t know if people were saying good or bad things. 

We observed a non-linear picture of significance on the effect of the average number of 

likes on sales based on store sizes. The number of likes had no impact on small stores, a strong 

significance on lower medium and upper medium stores, and a weakened but significant effect on 

large stores. We can interpret this as follows. The sales values of small stores have a very stable 

behavior over time, as seen in Figure 6. It can be inferred that their sales are not affected by any 

external factor such as social media. Therefore, the number of likes and comments have no power 

on explaining the future sales of small Walmart stores. 

Lower and upper medium Walmart stores usually have started establishing their customer 

base and are on their way to becoming large stores. These stores are at the point where sales 

performance may either improve or deteriorate based on customer satisfaction and loyalty. 

Therefore, the finding of number of likes to be a significant factor on their sales made sense. 

 Large Walmart stores usually have the best-established customer base. It might be 

reasonable to think that some of their customers shop from them no matter what, but some are 

more reactive to how the company runs its stores. We believe this can explain the relatively weaker 

but still significant impact of social media likes on large store sales. 

Our findings should motivate retailers to keep a social media presence and trace their 
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customer’s reactions on their social media page. If analyzed correctly, social media data become 

a reliable indicator on their customer attitudes toward them. Moreover, the results of this research 

would seem to encourage retailers to focus on their medium-sized stores the most when forming 

their policies. Designing the marketing strategy based on how social media receives it can be a 

smart and inexpensive method of policy design, which can lead to optimized sales and revenue. 

We observed a consistent negative sign in front of both AR coefficients and the number of 

likes. Our interpretation of this somewhat surprising result is that sales follow a cyclic path, where 

high sales are usually followed by low sales, and vice versa. The negative coefficients of numbers 

of likes might be the result of a lag effect. Since a log-differenced series of likes subtracts today’s 

log series from yesterday’s, the negative coefficient might mean that an increase in today’s sales 

is observed when yesterday’s likes are higher than today’s. When we experimented with lagged 

values of log-differenced number of likes, we noticed that the coefficient became positive. We do 

not present an elaboration of this result in this thesis, but it can be explored in future work. 

Several extensions to the work presented here are suggested. Firstly, sentiment analysis of 

comments can bring value to understanding the behavior of the sales time series. Future work can 

be directed at analyzing the effects of comments and consider not only the quantity but the essence 

of such comments. In that regard, creating two separate variables as the number of positive 

comments and negative comments, or a sentiment value for each comment may improve the 

model. Secondly, a more detailed ARIMAX model with a search through lags of the independent 

variables and their nonlinear transformations can improve the proposed model. Thirdly, a more 

granular study in which more than four store size groups can uncover additional hidden patterns. 

Lastly, the Box-Jenkins methodology employed to model sales using social media should be 

extended to organizations similar to Walmart and any company who has a social media presence. 



 
42 

 

BIBLIOGRAPHY 

 

Allon, G., & Zhang, D. J. (2015). Managing Service Systems in the Presence of Social Networks. 

Available at SSRN 2673137. 

 

Asur, S., & Huberman, B.A. (2010). Predicting the Future with Social Media. IEEE/WIC/ACM 

International Conference on Web Intelligence and Intelligent Agent Technology, 492–499. 

 

Barbera, S. (2016). How Retailers Use Social Media to Predict Consumer Demand [Blog Post]. 

Retrieved from https://www.cgsinc.com/blog/how-retailers-use-social-media-predict-consumer-

demand 

 

Beheshti-Kashi, S., Karimi, H.R., Thoben, K.D., Lütjen, M., & Teucke, M. (2015). A Survey on 

Retail Sales Forecasting and Prediction in Fashion Markets. Systems Science & Control 

Engineering, 3(1), 154-161. 

 

Boone, T., Ganeshan, R., Hicks, R. L., & Sanders, N.R. (2018). Can Google Trends Improve Your 

Sales Forecast? Production and Operations Management. Retrieved from 

https://doi.org/10.1111/poms.12839 

 

Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (2008). Time Series Analysis: Forecasting and 

Control (4th ed.). Hoboken, NJ: John Wiley & Sons Inc. 

 

Candogan, O., Bimpikis, K., & Ozdaglar, A. (2012). Optimal Pricing in Networks with 

Externalities. Operations Research, 60(4), 883-905. 

 

Chen, Y., Fay, S., & Wang Q. (2011). The Role of Marketing in Social Media: How Online 

Consumer Reviews Evolve. Journal of Interactive Marketing, 25(2), 85-94. 

 

https://doi.org/10.1111/poms.12839


 
43 

 

Cui, R., Gallino, S., Moreno, A., & Zhang, D. (2017). The Operational Value of Social Media 

Information. Production and Operations Management. Retrieved from   

https://doi.org/10.1111/poms.12707 

 

Diebold, F. X. (2007). Elements of Forecasting (4th ed.). Mason, OH: Thomson Higher Education 

 

Hameed, B. (2011). Social Media Usage Exploding amongst Fortune 500 Companies [Blog Post]. 

Retrieved from http://www.adweek.com/digital/social-media-usage-exploding-amongst-fortune-

500-companies/ 

 

Hyndman, R.J. (2010). The ARIMAX model muddle [Blog Post]. Retrieved from 

https://robjhyndman.com/hyndsight/arimax/ 

 

Hyndman. R. J., & Athanasopoulos, G. (2012). Forecasting: Principles and Practice. Retrieved 

from https://www.otexts.org/fpp 

 

Hyndman, R.J., & Khandakar. Y. (2008). Automatic Time Series Forecasting: The Forecast 

Package for R. Journal of Statistical Software, 27(3). 

 

John, L. K., Emrich, O., Gupta, S., & Norton, M. I. (2017). Does “Liking” Lead to Loving? The 

Impact of Joining a Brand’s Social Network on Marketing Outcomes. Journal of Marketing 

Research, 54(1), 144-155. 

 

Kumar, A., Bezawada, R., Rishika, R., Janakiraman, R., & Kannan, P.K. (2016). From Social to 

Sale: The Effects of Firm-Generated Content in Social Media on Customer Behavior. Journal of 

Marketing, 80(1), 7-25. 

 

Ljung, G. M., & Box, G. E. P. (1978). On a Measure of a Lack of Fit in Time Series 

Models. Biometrika 65(2), 297–303. 

 

https://doi.org/10.1111/poms.12707


 
44 

 

Papanastasiou, Y., & Savva, N. (2014). Dynamic Pricing in the Presence of Social Learning and 

Strategic Consumers, Working Paper.  

 

Russell, M. A. (2013). Mining the Social Web (2nd ed). Sebastopol, CA: O’Reilly Media Inc. 

 

Stephen, A. T., & Galak, J. (2012). The Effects of Traditional and Social Earned Media on Sales: 

A Study of a Microlending Marketplace. Journal of Marketing Research, 49(5), 624-639. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
45 

 

APPENDICES 

 

APPENDIX 1 – A data file example 

Date  store_size    sales  comments_avg     likes_avg 

2/5/2010  Large  23444736.14       943   2492 

2/12/2010  Large  22273846.64       781   2075 

2/19/2010  Large  22474784.83       809   2696 

2/26/2010  Large  20234521.78       752   2807 

3/5/2010  Large  21568615.3       346   1169 

3/12/2010  Large  21271741.54       1338   5330 

3/19/2010  Large  20726570.6       1097   1393 

3/26/2010  Large  20130605.86       597   2354 

4/2/2010  Large  23411624.39       593   2105 

4/9/2010  Large  21774496.54       290   642 

4/16/2010  Large  20801375.54       4188   5886 

4/23/2010  Large  20543443.09       938   5045 

4/30/2010  Large  20112594.01       1092   4859 

5/7/2010  Large  22451986.27       1226   3819 

5/14/2010  Large  20839531.78       1508   6084 

5/21/2010  Large  20656799.62       2592   11513 

5/28/2010  Large  21670794.45       1475   8127 

6/4/2010  Large  23128781.3       2526   5945 

6/11/2010  Large  21887438.65       999   6364 

6/18/2010  Large  21773694.7       983   5162 
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APPENDIX 2 – R code for the data preparation and the fitting of the best ARIMAX 

models 

# Importing the libraries 

library(forecast) 

library(lmtest) 

library(tseries) 

 

# Declaring the working directory 

setwd("C:\\Users\\aybike\\Desktop\\Thesis\\Data\\FinalData\\") 

 

# Declaring the data 

large <- read.csv(file="large.csv", header=TRUE, sep=",") 

data <- large[, 'sales'] 

 

# Removing the Christmas season from the data  

data <- large[large[,'sales']<25000000,] 

data <- data[data[,'likes_avg']!=0,] 

 

# ADF tests to check stationarity 

adf.test(data[,'sales']) 

adf.test(data[,'likes_avg']) 

adf.test(data[,'comments_avg']) 

 

# Differencing the data to make data stationary on mean (remove trend) 

diff(data[,'sales']) 

diff(data[,'likes_avg']) 

diff(data[,'comments_avg']) 

 

# Log transforming the data to make data stationary on variance 

log(data[,'sales']) 

log(data[,'likes_avg']) 

log(data[,'comments_avg']) 

 

# Differencing and log transforming the data to make data stationary on both mean and variance 

diff(log(data[,'sales'])) 

diff(log(data[,'likes_avg'])) 

diff(log(data[,'comments_avg'])) 

 

# ADF tests to check stationarity after decomposition processes 

adf.test(diff(log(data[,'likes_avg']))) 

adf.test(diff(log(data[,'comments_avg']))) 

 

# Identification of best fit ARIMAX model (Sales & Log Differencing Likes and Comments) 

average_likes = diff(log(data[,'likes_avg'])) 

average_comments = diff(log(data[,'comments_avg'])) 

my_y = data[,'sales'][c(2:length(data[,'sales']))] 

Largefit <- auto.arima(my_y, xreg=cbind(average_likes,average_comments)) 

summary(Largefit) 

coeftest(Largefit) 

 

# Drawing the ACF plot for residuals of ARIMAX model to ensure no more information is left for extraction 

acf(ts(Largefit$residuals),main='ACF Residual') 
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# Ljung Box test to check whether the residuals are random and independent 

Box.test(resid(Largefit),type="Ljung",lag=20,fitdf=1) 
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APPENDIX 3 – R code for plotting 

library(forecast) 

library(lmtest) 

library(tseries) 

 

# AGGREGATE WEEKLY SALES 

setwd("C:\\Users\\aybike\\Desktop\\Thesis\\Data\\") 

data <- read.csv(file="AggregateWeeklySales.csv", header=TRUE, sep=",") 

myDates <- as.Date(as.character(data[,'Date']), format="%m/%d/%Y") 

 

v1 <- as.Date(c("2010-02-05","2011-01-07","2012-01-06", "2012-10-26")) 

w1 <- c("40000000","50000000", "65000000", "80000000") 

 

v2 <- c("Feb 2010","Jan 2011","Jan 2012","Oct 2012") 

w2 <- c("35","50", "65", "80") 

 

plot(myDates, data[,'sales'], xaxt = "n", yaxt = "n", xlab='Date', ylab='Sales (Millions of Dollars)', main="Weekly 

Walmart Sales (All Stores)") 

axis(side = 1, at = v1, labels = v2, tck=-.02) 

axis(side = 2, at = w1, labels = w2, tck=-.02) 

 

# INITIAL SALES PLOTS (INCLUDING THE CHRISTMAS SEASON) 

 

# LARGE STORES 

setwd("C:\\Users\\aybike\\Desktop\\Thesis\\Data\\FinalData\\") 

data <- read.csv(file="large.csv", header=TRUE, sep=",") 

myDates <- as.Date(as.character(data[,'Date']), format="%m/%d/%Y") 

 

v1 <- as.Date(c("2010-02-05","2011-01-07","2012-01-06", "2012-10-26")) 

w1 <- c("20000000","25000000", "30000000", "35000000") 

 

v2 <- c("Feb 2010","Jan 2011","Jan 2012","Oct 2012") 

w2 <- c("20","25", "30", "35") 

 

plot(myDates, data[,'sales'], xaxt = "n", yaxt = "n", xlab='Date', ylab='Sales (Millions of Dollars)', main="Weekly 

Walmart Sales (Large Stores)") 

axis(side = 1, at = v1, labels = v2, tck=-.02) 

axis(side = 2, at = w1, labels = w2, tck=-.02) 

 

# UPPER MEDIUM STORES 

setwd("C:\\Users\\aybike\\Desktop\\Thesis\\Data\\FinalData\\") 

data <- read.csv(file="uppermedium.csv", header=TRUE, sep=",") 

myDates <- as.Date(as.character(data[,'Date']), format="%m/%d/%Y") 

 

v1 <- as.Date(c("2010-02-05","2011-01-07","2012-01-06", "2012-10-26")) 

w1 <- c("10000000","14000000", "16000000", "20000000") 

 

v2 <- c("Feb 2010","Jan 2011","Jan 2012","Oct 2012") 

w2 <- c("10","14", "16", "20") 

 

plot(myDates, data[,'sales'], xaxt = "n", yaxt = "n", xlab='Date', ylab='Sales (Millions of Dollars)', main="Weekly 

Walmart Sales (Upper Medium Stores)") 

axis(side = 1, at = v1, labels = v2, tck=-.02) 
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axis(side = 2, at = w1, labels = w2, tck=-.02) 

 

# LOWER MEDIUM STORES 

setwd("C:\\Users\\aybike\\Desktop\\Thesis\\Data\\FinalData\\") 

data <- read.csv(file="lowermedium.csv", header=TRUE, sep=",") 

myDates <- as.Date(as.character(data[,'Date']), format="%m/%d/%Y") 

 

v1 <- as.Date(c("2010-02-05","2011-01-07","2012-01-06", "2012-10-26")) 

w1 <- c("7000000","10000000", "14000000", "17000000") 

 

v2 <- c("Feb 2010","Jan 2011","Jan 2012","Oct 2012") 

w2 <- c("7","10", "14", "17") 

plot(myDates, data[,'sales'], xaxt = "n", yaxt = "n", xlab='Date', ylab='Sales (Millions of Dollars)', main="Weekly 

Walmart Sales (Lower Medium Stores)") 

 

axis(side = 1, at = v1, labels = v2, tck=-.02) 

axis(side = 2, at = w1, labels = w2, tck=-.02) 

 

# SMALL STORES 

setwd("C:\\Users\\aybike\\Desktop\\Thesis\\Data\\FinalData\\") 

data <- read.csv(file="small.csv", header=TRUE, sep=",") 

myDates <- as.Date(as.character(data[,'Date']), format="%m/%d/%Y") 

 

v1 <- as.Date(c("2010-02-05","2011-01-07","2012-01-06", "2012-10-26")) 

w1 <- c("4000000","4500000") 

 

v2 <- c("Feb 2010","Jan 2011","Jan 2012","Oct 2012") 

w2 <- c("4","4.5") 

 

plot(myDates, data[,'sales'], xaxt = "n", yaxt = "n", xlab='Date', ylab='Sales (Millions of Dollars)', main="Weekly 

Walmart Sales (Small Stores)") 

axis(side = 1, at = v1, labels = v2, tck=-.02) 

axis(side = 2, at = w1, labels = w2, tck=-.02) 

 

# AVERAGE NUMBER OF LIKES 

setwd("C:\\Users\\aybike\\Desktop\\Thesis\\Data\\FinalData\\") 

data <- read.csv(file="small.csv", header=TRUE, sep=",") 

myDates <- as.Date(as.character(data[,'Date']), format="%m/%d/%Y") 

 

v1 <- as.Date(c("2010-02-05","2011-01-07","2012-01-06", "2012-10-26")) 

w1 <- c("100000","250000", "500000") 

 

v2 <- c("Feb 2010","Jan 2011","Jan 2012","Oct 2012") 

w2 <- c("100","250","500") 

 

plot(myDates, data[,'likes_avg'], xaxt = "n", yaxt = "n", xlab='Date', ylab='Number of Likes (in Thousands)', 

main="Average Weekly Number of Likes") 

 

axis(side = 1, at = v1, labels = v2, tck=-.02) 

axis(side = 2, at = w1, labels = w2, tck=-.02) 

 

# AVERAGE NUMBER OF COMMENTS 

setwd("C:\\Users\\aybike\\Desktop\\Thesis\\Data\\FinalData\\") 

data <- read.csv(file="small.csv", header=TRUE, sep=",") 

myDates <- as.Date(as.character(data[,'Date']), format="%m/%d/%Y" 
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v1 <- as.Date(c("2010-02-05","2011-01-07","2012-01-06", "2012-10-26")) 

w1 <- c("10000","20000", "30000") 

 

v2 <- c("Feb 2010","Jan 2011","Jan 2012","Oct 2012") 

w2 <- c("10","20","30") 

 

plot(myDates, data[,'comments_avg'], xaxt = "n", yaxt = "n", xlab='Date', ylab='Number of Comments (in 

Thousands)', main="Average Weekly Number of Comments") 

axis(side = 1, at = v1, labels = v2, tck=-.02) 

axis(side = 2, at = w1, labels = w2, tck=-.02) 

 

# PLOTS FOR THE SERIES AFTER DECOMPOSITION PROCESSES (CHRISTMAS SEASON REMOVED) 

 

# SMALL STORE SALES - AFTER DIFFERENCING  

setwd("C:\\Users\\aybike\\Desktop\\Thesis\\Data\\FinalData\\") 

small <- read.csv(file="small.csv", header=TRUE, sep=",") 

data <- small[small[,'sales']<25000000,] 

data <- data[data[,'likes_avg']!=0,] 

 

myDates <- as.Date(as.character(data[,'Date']), format="%m/%d/%Y") 

myDates = myDates[c(2:length(data[,'sales']))] 

 

v1 <- as.Date(c("2010-02-05","2011-01-07","2012-01-06", "2012-10-26")) 

w1 <- c("100000","700000") 

 

v2 <- c("Feb 2010","Jan 2011","Jan 2012","Oct 2012") 

w2 <- c("100","700") 

 

plot(myDates, diff(data[,'sales']), xaxt = "n", yaxt = "n", xlab='Date', ylab='Sales (Thousands of Dollars)', 

main="Weekly Walmart Sales (Small Stores)") 

axis(side = 1, at = v1, labels = v2, tck=-.02) 

axis(side = 2, at = w1, labels = w2, tck=-.02) 

 

# AVERAGE NUMBER OF LIKES - AFTER DIFFERENCING  

setwd("C:\\Users\\aybike\\Desktop\\Thesis\\Data\\FinalData\\") 

small <- read.csv(file="small.csv", header=TRUE, sep=",") 

data <- small[small[,'sales']<25000000,] 

data <- data[data[,'likes_avg']!=0,] 

 

myDates <- as.Date(as.character(data[,'Date']), format="%m/%d/%Y") 

myDates = myDates[c(2:length(data[,'likes_avg']))] 

 

v1 <- as.Date(c("2010-02-05","2011-01-07","2012-01-06", "2012-10-26")) 

w1 <- c("50000","250000") 

 

v2 <- c("Feb 2010","Jan 2011","Jan 2012","Oct 2012") 

w2 <- c("50","250") 

 

plot(myDates, diff(data[,'likes_avg']), xaxt = "n", yaxt = "n", xlab='Date', ylab='Number of Likes (in Thousands)', 

main="Average Weekly Number of Likes") 

axis(side = 1, at = v1, labels = v2, tck=-.02) 

axis(side = 2, at = w1, labels = w2, tck=-.02) 

  

# AVERAGE NUMBER OF COMMENTS - AFTER DIFFERENCING  

setwd("C:\\Users\\aybike\\Desktop\\Thesis\\Data\\FinalData\\") 
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small <- read.csv(file="small.csv", header=TRUE, sep=",") 

data <- small[small[,'sales']<25000000,] 

data <- data[data[,'likes_avg']!=0,] 

 

myDates <- as.Date(as.character(data[,'Date']), format="%m/%d/%Y") 

myDates = myDates[c(2:length(data[,'comments_avg']))] 

 

v1 <- as.Date(c("2010-02-05","2011-01-07","2012-01-06", "2012-10-26")) 

w1 <- c("5000","25000") 

 

v2 <- c("Feb 2010","Jan 2011","Jan 2012","Oct 2012") 

w2 <- c("5","25") 

 

plot(myDates, diff(data[,'comments_avg']), xaxt = "n", yaxt = "n", xlab='Date', ylab='Number of Comments (in 

Thousands)', main="Average Weekly Number of Comments") 

axis(side = 1, at = v1, labels = v2, tck=-.02) 

axis(side = 2, at = w1, labels = w2, tck=-.02) 

 

# SMALL STORE SALES - AFTER LOG TRANSFORM 

setwd("C:\\Users\\aybike\\Desktop\\Thesis\\Data\\FinalData\\") 

small <- read.csv(file="small.csv", header=TRUE, sep=",") 

data <- small[small[,'sales']<25000000,] 

data <- data[data[,'likes_avg']!=0,] 

 

myDates <- as.Date(as.character(data[,'Date']), format="%m/%d/%Y") 

 

v1 <- as.Date(c("2010-02-05","2011-01-07","2012-01-06", "2012-10-26")) 

w1 <- c("15.1", "15.2", "15.3", "15.4") 

 

v2 <- c("Feb 2010","Jan 2011","Jan 2012","Oct 2012") 

w2 <- c("15.1", "15.2", "15.3", "15.4") 

 

plot(myDates, log(data[,'sales']), xaxt = "n", yaxt = "n", ylim=c(15.1,15.4), xlab='Date', ylab='Sales', main="Weekly 

Walmart Sales (Small Stores)") 

axis(side = 1, at = v1, labels = v2, tck=-.02) 

axis(side = 2, at = w1, labels = w2, tck=-.02) 

 

# AVERAGE NUMBER OF LIKES - AFTER LOG TRANSFORM 

setwd("C:\\Users\\aybike\\Desktop\\Thesis\\Data\\FinalData\\") 

small <- read.csv(file="small.csv", header=TRUE, sep=",") 

data <- small[small[,'sales']<25000000,] 

data <- data[data[,'likes_avg']!=0,] 

 

myDates <- as.Date(as.character(data[,'Date']), format="%m/%d/%Y") 

 

v1 <- as.Date(c("2010-02-05","2011-01-07","2012-01-06", "2012-10-26")) 

w1 <- c("5","10","13") 

 

v2 <- c("Feb 2010","Jan 2011","Jan 2012","Oct 2012") 

w2 <- c("5","10","13") 

 

plot(myDates, log(data[,'likes_avg']), xaxt = "n", yaxt = "n", xlab='Date', ylab='Number of Likes', main="Average 

Weekly Number of Likes") 

axis(side = 1, at = v1, labels = v2, tck=-.02) 

axis(side = 2, at = w1, labels = w2, tck=-.02) 
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# AVERAGE NUMBER OF COMMENTS - AFTER LOG TRANSFORM 

setwd("C:\\Users\\aybike\\Desktop\\Thesis\\Data\\FinalData\\") 

small <- read.csv(file="small.csv", header=TRUE, sep=",") 

data <- small[small[,'sales']<25000000,] 

data <- data[data[,'likes_avg']!=0,] 

 

myDates <- as.Date(as.character(data[,'Date']), format="%m/%d/%Y") 

 

v1 <- as.Date(c("2010-02-05","2011-01-07","2012-01-06", "2012-10-26")) 

w1 <- c("4","7","10") 

 

v2 <- c("Feb 2010","Jan 2011","Jan 2012","Oct 2012") 

w2 <- c("4","7","10") 

 

plot(myDates, log(data[,'comments_avg']), xaxt = "n", yaxt = "n", xlab='Date', ylab='Number of Comments', 

main="Average Weekly Number of Comments") 

axis(side = 1, at = v1, labels = v2, tck=-.02) 

axis(side = 2, at = w1, labels = w2, tck=-.02) 

 

# SMALL STORE SALES - AFTER DIFFERENCING AND LOG TRANSFORM 

setwd("C:\\Users\\aybike\\Desktop\\Thesis\\Data\\FinalData\\") 

small <- read.csv(file="small.csv", header=TRUE, sep=",") 

data <- small[small[,'sales']<25000000,] 

data <- data[data[,'likes_avg']!=0,] 

 

myDates <- as.Date(as.character(data[,'Date']), format="%m/%d/%Y") 

myDates = myDates[c(2:length(data[,'sales']))] 

 

v1 <- as.Date(c("2010-02-05","2011-01-07","2012-01-06", "2012-10-26")) 

w1 <- c("0","0.5") 

 

v2 <- c("Feb 2010","Jan 2011","Jan 2012","Oct 2012") 

w2 <- c("0","0.5") 

 

plot(myDates, diff(log(data[,'sales'])), xaxt = "n", yaxt = "n", xlab='Date', ylab='Sales', main="Weekly Walmart 

Sales (Small Stores)") 

axis(side = 1, at = v1, labels = v2, tck=-.02) 

axis(side = 2, at = w1, labels = w2, tck=-.02) 

 

# AVERAGE NUMBER OF LIKES - AFTER DIFFERENCING AND LOG TRANSFORM 

setwd("C:\\Users\\aybike\\Desktop\\Thesis\\Data\\FinalData\\") 

small <- read.csv(file="small.csv", header=TRUE, sep=",") 

data <- small[small[,'sales']<25000000,] 

data <- data[data[,'likes_avg']!=0,] 

 

myDates <- as.Date(as.character(data[,'Date']), format="%m/%d/%Y") 

myDates = myDates[c(2:length(data[,'likes_avg']))] 

 

v1 <- as.Date(c("2010-02-05","2011-01-07","2012-01-06", "2012-10-26")) 

w1 <- c("0","1") 

 

v2 <- c("Feb 2010","Jan 2011","Jan 2012","Oct 2012") 

w2 <- c("0","1") 

plot(myDates, diff(log(data[,'likes_avg'])), xaxt = "n", yaxt = "n", xlab='Date', ylab='Number of Likes', 



 
53 

 

main="Average Weekly Number of Likes") 

axis(side = 1, at = v1, labels = v2, tck=-.02) 

axis(side = 2, at = w1, labels = w2, tck=-.02) 

 

# AVERAGE NUMBER OF COMMENTS - AFTER DIFFERENCING AND LOG TRANSFORM 

setwd("C:\\Users\\aybike\\Desktop\\Thesis\\Data\\FinalData\\") 

small <- read.csv(file="small.csv", header=TRUE, sep=",") 

data <- small[small[,'sales']<25000000,] 

data <- data[data[,'likes_avg']!=0,] 

 

myDates <- as.Date(as.character(data[,'Date']), format="%m/%d/%Y") 

myDates = myDates[c(2:length(data[,'comments_avg']))] 

 

v1 <- as.Date(c("2010-02-05","2011-01-07","2012-01-06", "2012-10-26")) 

w1 <- c("0","1") 

 

v2 <- c("Feb 2010","Jan 2011","Jan 2012","Oct 2012") 

w2 <- c("0","1") 

 

plot(myDates, diff(log(data[,'comments_avg'])), xaxt = "n", yaxt = "n", xlab='Date', ylab='Number of Comments', 

main="Average Weekly Number of Comments") 

axis(side = 1, at = v1, labels = v2, tck=-.02) 

axis(side = 2, at = w1, labels = w2, tck=-.02) 

 

# ACF PLOTS FOR RESIDUALS AFTER ARIMAX  

 

# LARGE STORES 

setwd("C:\\Users\\aybike\\Desktop\\Thesis\\Data\\FinalData\\") 

large <- read.csv(file="large.csv", header=TRUE, sep=",") 

data <- large[, 'sales'] 

data <- large[large[,'sales']<25000000,] 

data <- data[data[,'likes_avg']!=0,] 

 

average_likes = diff(log(data[,'likes_avg'])) 

average_comments = diff(log(data[,'comments_avg'])) 

my_y = data[,'sales'][c(2:length(data[,'sales']))] 

Largefit <- auto.arima(my_y, xreg=cbind(average_likes,average_comments)) 

 

acf(ts(Largefit$residuals),main='ACF for Residuals (Large Stores)') 

 

# UPPER MEDIUM STORES 

setwd("C:\\Users\\aybike\\Desktop\\Thesis\\Data\\FinalData\\") 

uppermedium <- read.csv(file="uppermedium.csv", header=TRUE, sep=",") 

data <- uppermedium[uppermedium[,'sales']<25000000,] 

data <- data[data[,'likes_avg']!=0,] 

 

average_likes = diff(log(data[,'likes_avg'])) 

average_comments = diff(log(data[,'comments_avg'])) 

my_y2 = data[,'sales'][c(2:length(data[,'sales']))] 

Upperfit <- auto.arima(my_y2, xreg=cbind(average_likes,average_comments)) 

 

acf(ts(Upperfit$residuals),main='ACF for Residuals (Upper Medium Stores)') 

 

# LOWER MEDIUM STORES 

setwd("C:\\Users\\aybike\\Desktop\\Thesis\\Data\\FinalData\\") 
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lowermedium <- read.csv(file="lowermedium.csv", header=TRUE, sep=",") 

data <- lowermedium[lowermedium[,'sales']<25000000,] 

data <- data[data[,'likes_avg']!=0,] 

 

average_likes = diff(log(data[,'likes_avg'])) 

average_comments = diff(log(data[,'comments_avg'])) 

my_y3 = data[,'sales'][c(2:length(data[,'sales']))] 

Lowerfit <- auto.arima(my_y3, xreg=cbind(average_likes,average_comments)) 

 

acf(ts(Lowerfit$residuals),main='ACF for Residuals (Lower Medium Stores)') 

 

# SMALL STORES 

setwd("C:\\Users\\aybike\\Desktop\\Thesis\\Data\\FinalData\\") 

small <- read.csv(file="small.csv", header=TRUE, sep=",") 

data <- small[small[,'sales']<25000000,] 

data <- data[data[,'likes_avg']!=0,] 

 

average_likes = diff(log(data[,'likes_avg'])) 

average_comments = diff(log(data[,'comments_avg'])) 

my_y4 = diff(log(data[,'sales'])) 

Smallfit <- auto.arima(my_y4, xreg=cbind(average_likes,average_comments)) 

 

acf(ts(Smallfit$residuals),main='ACF for Residuals (Small Stores)') 
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