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Abstract 

By 

Juan Luis Pinedo 

Coordination polymers have become a topic of interest because these materials have a 

large variety of applications. A subclass of these materials are metal-organic frameworks 

(MOFs). MOFs have been researched due to their porosity and simple synthetic pathways. 

Structurally, a MOF is composed of one or more organic ligands serving as the backbone of the 

structure. These ligands are complexed with metal ions coordinating into the desired structure. It 

is this structure that gives way to a variable porosity useful for proton conductivity and material 

transport. By varying backbone size a framework can be customized for use in specific 

applications. This can either result to differences in distance between molecules or 

interpenetration of frameworks with each other. A bulkier backbone has been seen to decrease 

the catenation of frameworks and in turn increase the volume observed. On the other hand a less 

sterically hindered molecule results in more catenation thus increasing the surface area of the 

molecule. For these reasons we sought to synthesize a variety of ligands with different size 

backbones (Naphthalene, pyromellitic, biphenyl and perylene diimide) for the future synthesis of 

MOFs for proton conduction studies. Here we present the initial data from our research including 

the spectroscopic data for dipyridyl naphthalene diimide, dipyridyl pyromellitic diimide, 

dipyridyl biphenyl diimide, and dipyridyl perylene diimide. 
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CHAPTER 1:  

INTRODUCTION 

Coordination polymers have become a topic of interest because these materials have a 

large variety of applications. A subclass of these materials are metal-organic frameworks 

(MOFs). MOFs have been researched due to their porosity and simple synthetic pathways. 

Structurally, a MOF is composed of one or more organic ligands serving as the backbone of the 

structure. These ligands are complexed with metal ions coordinating into the desired structure. 

These coordination interactions are a result of ionic bonding between the metal cores and the 

ligands forming a structured molecule. For one of these coordination polymers to be considered a 

MOF it must have dimensionality greater than one dimension. 

Ideally, a MOF is coordinated in 3D space to increase its effective surface area. The 3D 

structure of a MOF allows it to be used in applications such as gas adsorption and catalysis.1 

Individual properties of the compound can be altered by using different organic compound as 

ligands and exchanging the metal ions for ones of a different oxidation state. A more negative 

charged side chain on a ligand would allow for a stronger bond to the metal core coordinating the 

structure in a higher degree of order. This high degree of structural order is indicative of the 

crystallinity of MOFs. As opposed to other coordination polymers which are amorphous, MOFs 

are characterized by their crystal structure. As a result, they can be easily identified after 

synthesis via X-ray crystallography. 

Other coordination polymers do not use metal ions as coordination molecules. In order to 

generate a structure with stronger bonding interactions between monomers covalent organic 
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frameworks (COFs) use organic molecules to coordinate the ligand structure.2 Resulting 

frameworks of this type are characterized by retention of the bond geometry that the coordinating 

molecule had. The ligand used in the creation of coordination polymers also affects the 

structures’ ability to hold guest molecules. A more rigid tetrahedral monomer results in a COF 

with a higher surface area than a trigonal monomer would produce. The tetrahedral structure 

limits the potential movement of the COF as well as allows for growth in four directions. This 

creates a higher degree of order as well as larger pores between ligand groups. 

The ligands being coordinated to the central molecule also affect the surface area of the 

structure. While the research of COFs has been extensive in the areas of naphthalene diimides 

and pyromellitic diimides, these ligands are of a smaller size than the not as thoroughly 

researched perylene. A smaller ligand such as pyromellitic diimide results in a shorter chain per 

unit and a more compact structure. This results in a lower surface area than a COF constructed 

from perylene when the more rigid tetrahedral coordination is used. However as reported by 

Venkata Rao et. al. under the more flexible trigonal structure the smaller ligand provides a higher 

surface area.2 When naphthalene was compared to these results it was seen that structures 

synthesized with it did not exhibit as high of a surface area as with the other two ligands. It can 

be inferred that as the middle ground in terms of size the naphthalene compound did not benefit 

from the flexibility of the pyromellitic diimide or the bulkiness seen with the perylene diimide. 

The difference in surface areas can be attributed to the catenation of the structures. A 

structure is said to be catenated when its framework interpenetrates or interweaves together with 

other units of itself.3 This interlocking of structures results in a framework that has smaller pores 

and as a result less surface area to bind to guest molecules. In exchange for a decrease in 
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effective surface area, frameworks of this type have been seen to possess higher mechanical 

stability as the interwoven molecules support the surrounding framework. It is due to this 

property that coordination polymers can be designed for a multitude of functions. As 

demonstrated by Omar K. Farha et. al., adding a bulky group to the interior of the framework 

pore allows for the degree of catenation to be controlled.3 By introducing a bromine atom to the 

pores of frameworks made of dipyridine naphthalene diimide, as well as other ligands of 

different sizes, complexed with 4,4´,4´´,4´´´-benzene-1,2,4,5-tetrayl-tetrabenzoic acid the 

structure of the resulting compound was altered. When using the non-brominated ligand, the 

catenation of the resulting framework demonstrated interweaving between structural units. 

Additionally, the framework constructed from naphthalene was interpenetrated in not only the x- 

and y-axis but the z-axis as well3. As naphthalene was the largest ligand complexed with the 

tetrabenzoic acid derivative it would indicate that the aromatic rings and bulky nature of the 

naphthalene lead to this type of interpenetration. Smaller size molecules seem to generate 

interwoven species in only the x- and y-directions. On the other hand, the complexes obtained 

from the brominated ligand resulted in no catenation and a larger size pore. This supports Omar’s 

conclusion that catenation can be controlled by introducing steric hindrance to the structure. 

Further work can now be done with this hindrance in mind to construct coordination polymers 

that are better suited for their designated use. 

In addition, the usage of two different organic ligands allows for the structure of the MOF 

to exceed a one-dimensional coordination. A main ligand is used to establish the structure of the 

polymer while a second smaller ligand is used as a strut establishing a higher order structure 

between two polymer chains.3 As described previously, this allows for a great amount of 



13 

 

customization in the structure of the compound. By using a ligand with a certain structure as a 

base the amount of connecting pillars that are complexed between them can be modified to allow 

for more porosity or stronger structural integrity. Ligands used as the pillars could also be 

modified to include charged functional groups for electrochemical and catalytic function. This 

pillaring also allows for otherwise one-dimensional structures to layer together to form a 

complex third-dimensional network. Adjusting the ligands used would result in a change in 

distance between base ligands culminating in a change in function. This further extends the 

adaptability of coordination polymers. 

As a result of their tunable pores and aromatic properties, coordination polymers have 

been investigated for the removal of toxins from water sources. Toxic compounds are produced 

from a large variety of industrial and commercial sources. Waste products from manufacturing of 

plastics, and chemical products are washed away into bodies of water that are not only used by 

aquatic life as a habitat but also by humans as water for consumption and cleaning. Dyes from 

printing, textiles and paperwork also contaminate the water supply in a more noticeable way. 

Even small amounts of dyes affect the quality of water as a noticeable change in appearances 

results from these compounds. In addition many dyes used in industry are toxic or carcinogenic 

so an effective way to remove dyes from water is a necessity.4 

Dyes are known to be a difficult material to remove as they are not easily degraded by 

sun light and are not susceptible to oxidation reactions in many cases. As Enamul Haque et. al. 

demonstrated, adsorption is a viable method for the removal of dyes from aqueous environment.4 

They specifically indicate how methyl orange and methylene blue are examples of anionic and 

cationic dyes that pose a danger due to their toxicity. While traditional methods are effective at 
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removing dyes individually, Enamul and his coworkers sought to use MOF-235, 

[Fe3O(terephthalate)3(DMF)3][FeCl4], to simultaneously remove both anionic and cationic dyes. 

The resulting efficiency was compared to activated carbon as a control. It was demonstrated that 

the MOF preformed adequately even though a low level of porosity was expected due to little 

adsorption of nitrogen. This is significant because a high effective adsorption of dye would 

indicate that the framework is working in such a way that the dye is being bound outside of the 

pores. An adapted structure of the MOF could be used to increase effectiveness despite apparent 

porosity. MOF-235 demonstrated a higher adsorption of both anionic and cationic dyes then 

what was seen with the activated charcoal. This was attributed to the electrostatic interactions 

that are generated from the positive and negative charged structures of a MOF. This claim was 

further supported by the decrease in adsorption when the pH is altered.4 It is also likely that the 

aromatic rings in the dyes form Van der Waals interactions within the ligands making up the 

backbone of the MOF. 

The adaptability provided by the structure of coordination polymers lends itself so well to 

the adsorption of molecules in an aqueous environment. Moreover, the customizability of the 

structure could be used to specifically target toxins in water while maintaining an easily 

recoverable form for disposal of the waste. This property could also be applied to gaseous waste 

such as that produced from the burning of compounds in industrial processes. The setting and 

bonding of components in electronics and mechanical equipment released harmful fumes that 

porous frameworks could serve to protect against. 

Epoxy resins are an important part of the production of electrical equipment because of 

its strong mechanical performance and adhesive ability. However these resins have a low fire 
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resistance resulting in toxic gas emission.5 Lei Sang and his group members sought to use MOFs 

to suppress the toxic gases resulting from burning of resins. A coordination polymer known as a 

zeolitic imidazolate framework (ZIF), a class of MOFs with similar topology as zeolites, was 

used because of its thermal stability as opposed to other coordination polymers. The high 

nitrogen content coupled with the metal ions in the structure allows for stable bonds between 

molecules thus increasing the stability of the ZIF at high temperatures.5 This means that not only 

could a MOF serve to adsorb toxic gases in case of combustion but also provide a flame 

resistance that would make operation of equipment safer and more effective. Additionally, Lei 

Sang demonstrates that polyphosphazenes have flame retardant properties as they self-extinguish 

and limit the oxygen available in the case of a fire. The known issue with these compounds is 

they have a high cost and low output making a two factor compound an important step in 

reducing fire risk. Therefore, Sang sought to synthesize an iron 2-methylimidazole MOF 

wrapped in poly(cyclotriphosphazene-co-4,4´-sulfonyldiphenol (PZS) to study its flame-resistant 

properties. Sang et. al. demonstrated that when epoxides was complexed with the iron-based 

MOF, it show a higher stability above 386℃ relative to the pure epoxy resins. The carbonization 

of the MOF framework serves to preserve the epoxide and limit the combustion of the resin 

reducing the emission of toxic compounds. 

The imidazole rich structure of this MOF could also be studied and complexed with 

different metals to impart properties beneficial to different types of resins. The iron used in this 

MOF could undergo oxidation allowing for the possibility of +2 and +3 oxidation states. If the 

metal were to be replaced with a metal ion having a different oxidation state, the coordination of 

the ligands could be different. This would result in different structure and bonding scheme as 
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well as a differing complex with the polyphosphazene. A complex with different coordination 

pattern may result in better flame resistance under various conditions. As earlier described, 

coordination polymers such as MOFs have pores that could be modified to suppress smoke 

emissions more effectively. Introducing a charged group into the pores could possibly bind to the 

particles in smoke filtering any combustion that is not suppressed by the covering compound. 

The overall aim of the projects presented in this thesis is to design varying ligands for use 

in the synthesis of coordination polymer. In addition, I also utilized 1,4-dihydroxy-2,5-

benzenediphosphonate ligand to synthesis metal coordination polymer. In this study, I 

investigated four pyridine-based ligands (Figure 1) with naphthalene, pyromellitic, biphenyl, and 

perylene diimide backbones. The rigid pyridine-diimide derivatives (consisting of rigid benzene, 

naphthalene, and perylene rings) could act as the pillar to link the metal cations into one to three-

dimensional network structures. The planar aromatic rings could also maintain the rigid 

framework after the removal of solvent molecules to form a porous framework. In addition, the 

rigid aromatic rings could favor intra-ligand interactions and induce luminescent features. 

Figure 1: Proposed pyridine-based diimide structures: N,N´-bis(4-pyridyl)-naphthalene diimide (1), 

N,N´-bis(4-pyridyl)-biphenyl diimide (2), N,N´-bis(4-pyridyl)-pyromellitic diimide (3), N,N´-bis(4-

pyridyl)-perylene diimide (4). 
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Diagram of Experimental Apparatus

   

Figure 2: A set-up for refluxing apparatus in the presence of nitrogen. 
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Figure 3: The set-up for a refluxing apparatus in dimethyl formamide using a voltmeter. 
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Figure 4: A Mettler Toledo balance with four decimal places was used to mass all the reactants. 
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Figure 5: A Fisher Brand oven set to 110 degrees Celsius was used to dry all the glassware and samples 

after filtration.  
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Figure 6: A 1200°C Hybrid Furnace - Tube/Muffle 3-In-1 was used in the hydro/solvothermal synthesis 

of the coordination polymers in polytetrafluoroethylene-lined Parr 4749 autoclaves with a 23mL internal 

volume. 
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CHAPTER 2:  

EXPERIMENTAL 

2.1 Syntheses 

Materials: All the reagents, 4-aminopyridine (99%, Sigma-Aldrich), benzene-1,2,4,5-

tetracarboxylic dianhydride (97 %, Sigma-Aldrich), perylene-3,4,9,10-tetracarboxlic dianhydride 

(98 %, Sigma -Aldrich), 1,4,5,8-naphthalenetetracarboxylic dianhydride (97 %, Sigma-Aldrich), 

3,3’,4,4’-biphenyltetra-carboxylic dianhydride (97 %, Aldrich), 2,5-dihydroxy-1,4-

benzenediphosphonic acid (98 %, Epsilon Chimie), imidazole (99.5%, Sigma-Aldrich),  

dimethylformamide (99.8% anhydrous, Sigma-Aldrich), and all other solvents were used without 

further purification.  

Synthesis of N,N´-bis(4-pyridyl)-naphthalene diimide (1) using Imidazole. The 

compound was synthesized by reacting 1,4,5,8-naphthalenetetracarboxylic dianhydride (503.7 

mg, 1.88 mmol) with 4-aminopyridine (543.4 mg, 5.77 mmol) in 2.0 g of molten imidazole. The 

mixture was heated under N2 in an oil bath at 130℃ for 30 min and allowed to cool to room 

temperature. The resulting solid was treated with a mixture of H2O: EtOH: HNO3 (10:10:1 ratio) 

and filtered. It was washed again with the same solution and then sequentially with cold H2O, 

EtOH and Et2O. The resulting product was a brown solid. This solid was then recrystallized in 

150 mL DMF.1 The spectroscopic characterization of the compound was then taken. The first 
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synthesis yielded about 219.0 mg (27% yield) and my second synthesis yielded 270.0 mg (34.2% 

yield). 

Synthesis of N,N´-bis(4-pyridyl)-pyromellitic diimide (3) using DMF. 1,2,4,5-

benzenetetracarboxylic dianhydride (1002.0 mg, 4.6 mmol) and 4-aminopyridine (1080.0 mg, 

11.5 mmol) were added to a three-neck flask. Anhydrous dimethylformamide (DMF, 50 mL) 

was added under N2, and the solution was refluxed overnight under N2 at 130℃ for 24 hours. 

After the reaction mixture was cooled in an ice bath, the white slurry was filtered, and the 

product was washed with CH2Cl2 and acetone. The product was further washed in DMF and 

allowed to dry in an oven at 110℃.6 The FT-IR was then taken and compared to the spectrum of 

the reactants. Proton and carbon-13 NMR were taken in DMSO, and UV-Vis absorbance was 

done in DMF. The product yielded 992.0 mg (58.3% yield) on my first synthesis and 1232.0 mg 

on the second synthesis.  

Synthesis of N,N´-bis(4-pyridyl)-pyromellitic diimide (3) using imidazole. The 

synthesis was conducted using 1,2,4,5-benzenetetracarboxylic dianhydride (410.0 mg, 1.88 

mmol) and 4-aminopyridine (543.4 mg, 5.77 mmol) in 2.0 g molten imidazole at 120℃ for 30 

mins in the same fashion as the N,N´-bis(4-pyridyl)-naphthalene diimide procedure. The first 

approach yielded ~57.0 mg (8.2 % yield). A 6.75 % yield was obtained (47.0 mg) on my second 

attempt and the yield improved on my third attempt to produce 22.8 % (159.0 mg).  

Synthesis of N,N´-bis(4-pyridyl)-biphenyl diimide (2) using DMF. Using the same 

procedure as that for N,N´-bis(4-pyridyl)-pyromellitic diimide (3); 3,3’,4,4’-biphenyl 

tetracarboxylic dianhydride (1354.0 mg, 4.6 mmol) and 4-aminopyridine (1078.0 g, 11.5 mmol) 
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were refluxed in 50 mL DMF at 120℃ for 24 hours to produce an off white solid of about 716.5 

mg (34.9 % yield). The resulting product was then characterized to confirm the structure.  

Synthesis of N,N´-bis(4-pyridyl)-biphenyl diimide (2) using imidazole. The synthesis was 

conducted using 3,3’,4,4’-biphenyl tetracarboxylic dianhydride (553.12 mg, 1.88 mmol) and 4-

aminopyridine (543.4 mg, 5.77 mmol) in 2.0 g of molten imidazole in the same fashion as the 

N,N´-bis(4-pyridyl)-naphthalene diimide. A 126.8 mg yield (15.1%) was obtained from our first 

synthesis and the yield imcreased to 265.0 mg (31.6 %) was obtained from our second synthesis.  

Synthesis of N,N´-bis(4-pyridyl)-perylene diimide (4) using imidazole. The synthesis 

was conducted using 3,4,9,10-perylenetetracarboxylic dianhydride (737.6 mg, 1.88 mmol) and 4-

aminopyridine (543.4 mg, 5.77 mmol) in 2.0 g of molten imidazole in the same fashion as the 

N,N´-bis(4-pyridyl)-naphthalene diimide. A 1050.0 mg yield (104 percent) was obtained after 

my synthesis.  

Synthesis of N,N´-bis(4-pyridyl)-perylene diimide (4) using DMF. The compound was 

synthesized in DMF by adopting the method reported by Pagano et al.7 3,4,9,10-perylene-

tetracarboxylic dianhydride (1804.6 mg, 4.6 mmol) and 4-aminopyridine (1082.4 mg, 11.5 

mmol) were added to a three-necked flask and refluxed at 130℃ for 72 hours in 50 ml of DMF 

under nitrogen gas. The mixture was then allowed to cool to 80℃. Thereafter, dichloromethane 

was added to the mixture and cooled down to room temperature. The solution was divided into 

10 ml screw top centrifuge tubes and centrifuged at 4000 rpm for 45 minutes. The supernatant 

was decanted and disposed of. The remaining red solid was washed and filtered with diethyl 

either. It was left in an oven at 110℃ over night to dry. After analysis it was discovered that we 

did not produce the targeted product. 
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Synthesis of {[(CH3)2NH2]2[Zn{O3PC6H2(OH)2PO3}]}n (5). The compound was 

produced by adding Zn(NO3)2·6H2O (29.7 mg, 0.1 mmol) and 2,5-dihydroxy-1,4- 

benzenediphosphonic acid (27.0 mg, 0.1 mmol) into a 125 ml PTFE-lined Parr reaction vessel 

along with DMF/H2O/ ethanol (2.0/0.5/0.5 molar ratio, respectively). The vessel was heated in a 

programmable furnace (Figure 6) at 353 K for 3 days, and then the autoclave was cooled to 296 

K at an average rate of 274 K per hr. The mother liquor was decanted from the products and then 

placed in a petri dish. The solid products were washed with distilled water, dispersed with 

ethanol, and allowed to dry in air. Colorless tablets of the title compound were isolated and 

studied for single-crystal X-ray diffraction. 

NMR Spectroscopy: NMR was conducted on a Bruker 500 MHz Avance III HD 

instrument using deuterated DMSO as a solvent. 

UV-Vis Absorbance: UV-Vis absorbance was collected in DMF for compounds 1, 2, 

and 3, while compound 4 was dissolved in DMSO.  
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CHAPTER 3:  

RESULTS AND DISCUSSION 

3.1 Products 

The synthesis of our target diimides was successful with minor problems along the way. 

It was believed that the synthetic technique we adopted with imidazole as a solvent was not 

adequate and caused our temperature control not to function appropriately. The volume of the 

solvent in the flask was not enough to cover our probe while the reaction was running. As a 

result, the internal temperature of the reaction was not well known. At times the reaction reached 

temperatures above 170℃ thus leading to the decomposition of the product. This problem was 

not encountered when DMF was used as a solvent suggesting that the larger volume of solvent 

was a factor in controlling the internal reaction temperature of our reaction. N,N´-bis(4-pyridyl)-

naphthalene diimide (1) synthesis was observed to proceed according to established reaction 

mechanisms. The resulting product was a light brown solid (see Figure 7) that was then analyzed 

via spectroscopy to determine the purity and success of the synthesis. I was also able to 

successfully synthesize N,N´-bis(4-pyridyl)-pyromellitic diimide (3). The resulting product was a 

white powder which was analyzed in the same way as described in compound 1 (see Figure 8). 

N,N´-bis(4-pyridyl)-biphenyl diimide (2) was synthesized as an off-white crystalline powder as 

shown in Figure 9. To obtain the spectroscopy of the sample it was ground into a fine powder 

before analysis. Based on the differing powder colors observed, we believe that the two methods 

of synthesis did result in similar product with differing amounts of impurities. It was also 

determined that using imidazole as a solvent for synthesis was not efficient as the yield was low 
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compared to the synthesis in DMF. An issue we faced with this synthesis was partial 

crystallization of the product during work-up. As a result, the product was separated into 

multiple parts and the spectroscopy of each part was taken. Products with similar spectroscopy 

were combined together into one storage bottle. Synthesis of N,N´-bis(4-pyridyl)-perylene diimide 

(4) resulted in a dark red compound when synthesized using imidazole and a bright red 

compound when synthesized with DMF. 

 

 

Figure 7. N,N´-bis(4-pyridyl)-naphthalene diimide compound.  
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Figure 8: Pyromelitic diimide synthesized in DMF (left) and imidazole (right). 
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Figure 9: Biphenyl diimide synthesized in imidazole (top two and bottom right) and DMF (Bottom left) 
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The FT-IR spectra of the starting materials, 4-aminopyridine and 1,4,5,8-

naphthalenetetra-carboxylic dianhydride were compared with the spectrum of the product, N,N´-

bis(4-pyridyl)-naphthalene diimide (1), as shown in Figure 10. Based on the IR spectroscopy, it 

could be determined that the reactants bound correctly to form the product by the disappearance 

of the peak around 3500 cm-1. This peak is attributed to the bond between the nitrogen and 

hydrogen atoms in the pyridine which is no longer present in the diimide structure. The twin 

peaks at 1712 cm-1  and 1671 cm-1 are indicative of the aromatic ring of the pyridine incorporated 

into the structure of diimide.  

The FT-IR spectroscopy of N,N´-bis(4-pyridyl)-pyromellitic diimide (3) (see Figure 11) 

illustrated that the different synthetic methods resulted in differing products. For instance, when 

the synthesis was done with DMF, the products appear to be the same compound while the 

product synthesized with imidazole do not have similar peaks. It can be inferred from the peaks 

observed when DMF was used for the synthesis that the pyridine starting material was 

incorporated into the pyromellitic backbone. However, there are impurities and excess pyridine 

that need to be removed. Overall, the peaks around 1600 cm-1 for all products are indicative of 

the diimide product.  

Both the FT-IR spectroscopy of the crude and the purified products of N,N´-bis(4-

pyridyl)-biphenyl diimide (2) (see Figure 12) from DMF were the same compound. The 

disappearance of the prominent peak around 3500 cm-1 is indicative of the coupled pyridine with 

biphenyl dianhydride. The peaks around 2841.98 cm-1 are indicative of the diimide bonds to the 

biphenyl ring.  
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It was determined from the FT-IR spectroscopy (Figure 13) that the reaction in DMF was 

not successful. Spectrum analysis of imidazole-synthesized N,N´-bis(4-pyridyl)-perylene diimide 

(4) demonstrated promising peaks at 1768.71 cm-1 and 1665.34 cm-1 indicative of the pyridine 

being incorporated into the perylene backbone thus forming an imide.7 The absence of the peak 

at 3500 cm-1 that was seen in 4-aminopyridine spectrum also supports this conclusion. 

3.2 FT-IR Spectra 

 

 

Figure 10: Infrared spectroscopy of the starting materials 4-aminopyridine (top-left) and 1,4,5,8-

naphthalenetetracarboxylic dianhydride (top-right), and the N,N´-bis(4-pyridyl)-naphthalene diimide 

produced (bottom).  

 



32 

 

 

 

 

Figure 11: The Infrared spectra of 1,2,4,5-benzenetetracarboxylic dianhydride (top) and N,N´-bis(4-

pyridyl)-pyromellitic diimide (3) compounds: refluxed in DMF (middle) vs. Imidazole (bottom) was 

taken and compared with each other to determine if they are the same compound. 
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Figure 12: The FT-IR spectra of N,N´-bis(4-pyridyl)-biphenyl diimide (2) compound was taken for the 

crude product (refluxed in DMF) as well as the left over after vacuum filtration (top). The FT-IR 

spectrum of pure 3,3´,4,4´-biphenyl tetracarboxylic dianhydride (bottom spectrum). 
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Figure 13: FT-IR spectroscopy of the perylene-3,4,9,10-tetracarboxylic dianhydride (top) and the 

powder residue after refluxing 4-aminopyridine and perylene-3,4,9,10-tetracarboxylic dianhydride in 

DMF (middle) are almost identical. Synthesis in imidazole (bottom) shows promising peaks hinting at 

N,N´-bis(4-pyridyl)-perylene diimide (4) compound. 
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H-NMR spectroscopy was also conducted to characterize our compound. Singlet peaks at 

7.58, 8.76, and 8.81 ppm (see Figure 14)  indicate the structure of N,N´-bis(4-pyridyl)-

naphthalene diimide (1) as previously reported by Stephanie Jenson.8 These peaks are due to the 

symmetrical structure of compound 1 leading to the integration of four hydrogens for the peak at 

7.58 ppm, the hydrogens closest to the imide on the pyridine ring. The remaining peaks are 

attributed to the hydrogens on the naphthalene and the furthest hydrogens on the pyridine, 

respectively. C13-NMR however did not result in the expected 7 peaks of the symmetrical 

compound and instead only demonstrated one peak which is attributed to the solvent.  

H-NMR study of N,N´-bis(4-pyridyl)-pyromellitic diimide (3) synthesized in DMF 

provided enough evidence to confirm the synthesized compound 3. While there are some 

impurities in the sample, the peaks at 7.96, 8.11, and 8.85 ppm are indicative of compound 3 (see 

Figure 15).10 The peak at 7.96 ppm indicates the hydrogen atoms on the pyridine closest to the 

amide group on both side chains. The other peak at 8.11 ppm is attributed to the four furthest 

hydrogens on the pyridine ring while the peak at 8.85 ppm is consistent with the hydrogens on 

the benzene ring. C13-NMR also supports my claim since the six peaks shown correspond to the 

six peaks expected for compound 3. The solvent peak were huge and thus reducing the visibility 

of the product peaks, but they can still be attributed to the symmetric structure of 3.  

Both proton and carbon-13 NMR spectra of N,N´-bis(4-pyridyl)-biphenyl diimide (2) 

shown in Figure 16 for imidazole-based synthesis of 2 confirm that the compound is not pure. 

There is a considerable amount of noise and excess peaks from solvent and impurities. The 

splitting seen in the H-NMR spectrum of DMF-synthesized product seems to be indicative of the 

hydrogen on the pyridine atoms as the doublet peaks are expected from protons close to each 
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other. The peaks at 6.5 ppm and 8.0 ppm are interpreted to be the hydrogens on the pyridine 

according to their proximity to the carbonyl group, respectively. The C13-NMR of this product is 

inconclusive as all that is observable is the solvent peak for the DMSO.  

The NMR analysis of N,N´-bis(4-pyridyl)-perylene diimide as shown in Figure 17 was 

also inconclusive as neither the H-NMR nor C13-NMR spectrum displayed any peaks aside from 

the solvent peak and peaks attributed to impurities. I suspect some contamination resulting in 

acetone being introduce into our sample. 
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3.3 H-NMR and C13-NMR Spectrum 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: H-NMR (top) and C13-NMR (bottom) study of N,N´-bis(4-pyridyl)-naphthalene diimide (1) 

confirmed the product.  
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Figure 15: H-NMR (top) spectrum of N,N´-bis(4-pyridyl)-pyromellitic diimide (3) (refluxed in DMF) 

with the excess peaks ascribed to minor inpurites. The C13-NMR spectrum (bottom) also confirmed the 

formation of the target product. 
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Figure 16: H-NMR and C13-NMR spectra of the N,N´-bis(4-pyridyl)-biphenyl diimide (2) (synthesized 

in DMF) (top). H-NMR and C13-NMR spectra of the impured product (synthesized in imidazole) 

(bottom). 
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Figure 17: The H-NMR (top) and C13-NMR (bottom) spectra for the synsthesis of N,N´-bis(4-pyridyl)-

perylene diimide (4) compound did not confirm the desired product. The peaks correspond to the acetone 

peaks.  
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3.4 UV-Vis Spectra 

UV-Vis absorption study shown in Figure 18 supports our claim for the production of 

N,N´-bis(4-pyridyl)-naphthalene diimide (1) as the two peaks at 380 and 359 nm match the 

expected absorbance reported in the literature.9 These peaks are attributed to the aromatic 

backbone of the diimide, the naphthalene rings, and the pyridine side chain. 

 

 

Figure 18: UV-Vis absorbance of N,N´-bis(4-pyridyl)-naphthalene diimide (1) shows peaks due to the 

aromatic pyridine side chain as well as the aromaticity of the naphtalene backbone.  

 

The UV-Vis spectroscopy on N,N´-bis(4-pyridyl)-pyromellitic diimide (3) (see Figure 

19) demonstrates that the products synthesized by in both DMF and imidazole yielded similar 

result as all spectra had a prominent peak at 267 nm. This peak is attributed to the benzene 

aromatic group in the pyromellitic back bone as well as the pyridine side chains.  
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Figure 19: UV-Vis absorbace of N,N´-bis(4-pyridyl)-pyromellitic diimide (3) products (synthesized in 

DMF or Imidazole). These are expected to give the single large peak shown around 269 nm.  

 

 

 

Figure 20: UV-Vis absorbance of N,N´-bis(4-pyridyl)-biphenyl diimide (2) compound synthesized in 

imidazole or DMF – patterns from different batches are similar.  
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UV-Vis absorbance of N,N´-bis(4-pyridyl)-biphenyl diimide (2) (see Figure 20) 

demonstrates that all different batches from DMF/imidazole-synthesized products have similar 

compound. The peak around 268 is attributed to the aromatic nature of the symmetrical pyridine 

and biphenyl rings. This factors into the prominent peak observed like N,N´-bis(4-pyridyl)-

pyromellitic diimide (3).  

UV-Vis spectra of N,N´-bis(4-pyridyl)-perylene diimide (4) shown in Figure 21 is 

indicative of a promising structure. The two peaks in the visible region, 522 nm and 490 nm, are 

expected to give the dark red color of the product. Further down toward 263 nm this peak is 

attributed toward the perylene aromatic group as well as the pyridine groups. 

 

 

Figure 21: UV-Vis spectra of N,N´-bis(4-pyridyl)-perylene diimide (4) compounds indicate that the 

batches synthesized with imidazole are the same compound with the expected broad peaks at ~500 nm. 
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Now that we have established a reasonable synthesis method for our ligands, we hope to 

produce coordination polymers that take advantage of the various structural properties of our 

compounds. Ultimately, we will use our ligands in complexes with metal ions for proton 

conductivity studies. Transition metals such as silver11 and iron12 have proven to yield results in 

the field of proton conductivity. As a result, metals such as cadmium, manganese, and zirconium 

are being used in our polymer synthesis to ascertain viable crystallinity and properties. Ions 

capable of forming multiple oxidation states are believed to be promising precursor for these 

types of materials. By allowing metal ions to interchange electrons charge, interactions between 

molecules permits the flow of protons through the molecule. The aromatic groups allow for this 

as well as the conjugation of π bonds. This is also demonstrated in compounds such as squaric 

acid derrivitives.13 For this reason, we have focused on aromatic compounds as the backbone and 

side chains for our ligands. Specifically, it has been seen that pyridine is conducive to effective 

proton conductivity when complexed with Cu(II)14. Based on this the structure of our ligands is 

thought to be favorable for our purposes. The structural rigidity of aromatic rings also allows for 

our compounds to be usable without the need of water. Anhydrous environments have been a 

struggle to overcome as mentioned before. By varying our starting material from the single ring 

of pyromellitic dianhydride up to the bulky structure of perylene dianhydride we hope to 

discover the best structure for proton conduction. An appropriate ratio between flexibility and 

support would allow us to control the interpenetration seen in polymer structure and fine tune for 

our desired use.  
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Currently we are still in the synthesis phase of our study and have yet to establish a 

variety of polymers for study. We are hopeful that the most recently synthesized products will be 

conducive for x-ray crystallographic study. Previous attempts have shown that using a 

templating molecule along with our synthesis results in better crystallinity. The use of DMF is 

expected to not only serve as a solvent for the synthesis of crystal structures but to also fill the 

pores. Thereafter, the DMF will be replaced with protogenic guest molecules such as imidazole, 

this would help maintain the environment anhydrous.  

3.5 {[(CH3)2NH2]2[Zn{O3PC6H2(OH)2PO3}]}n (5) Structure 

 

 

Figure  22: The asymmetric unit of (5) in position 1 - x, 1 - y, 1 - z showing 50% displacement ellipsoids. 
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Figure 23:  View down [100] of the three-dimensional framework structure of (5) with the ZnO4 and PO3C 

moieties shown as polyhedra. Color key: ZnO4 groups = cyan, PO3C groups = magenta, oxygen = red, 

carbon = black, hydrogen = white. The (CH3)2NH2
+ cations are omitted for clarity. 

 

We have been able to synthesize a phosphonic acid-based polymer. The structure of 

{[(CH3)2NH2]2[Zn{O3PC6H2(OH)2PO3}]}n (5) crystallizes in the monoclinic space group P21/n 

(Table 2). The asymmetric unit contains one Zn2+ cation, a C6H4P2O8
4- hydroxyphosphonate 

tetra-anion and two (CH3)2NH2
+ cations (Figure 22). Four rigid phenyl spacers coordinate the 

three-dimensional framework via the O atoms and tetrahedral ZnO4 units (Figure 23). The PO3
2- 

moieties are coordinated by two of their oxygen atoms to Zn2+ while the others (O2 and O6) are 
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not. The distances between Zn-O bonds ranges from 1.9055 to 1.9671 Å and the 

hydroxyphosphonate ligand in (5) contains P-O bonds within a range of 1.5129 - 1.5337 Å. The 

latter bond lengths are within the expected range for deprotonated P—O bonds.16 The structure 

of (5) is like {[Zn(DHBP)](DMF)2}
16 as both frameworks are comprised of one dimensional 

channels occupied by guest molecules with the difference that {[Zn(DHBP)](DMF)2}
16 has 

neutral DMF and the phosphonate groups are singly, rather than doubly deprotonated. The 

channels reported for (5) compound are smaller than those for {[Zn(DHBP)](DMF)2} measuring 

approximately 12.9 X 7.1 Å between phenyl groups and 9.9 Å between Zn centers. The 

(CH3)2NH2
+ cations in (5) have been formed by the in situ decarbonylation of the DMF solvent. 

It is known that N,N-dimethylformamide can undergo loss of CO to form dimethylamine in the 

presence of a metal catalyst or through slow decomposition at elevated temperature around 427 

K.17–20 In the previous reports, the nitrate salts of Mg2+/Pb2+/Ho3+ and chloride salts of Nd3+/Zr4+ 

were suggested to act as a metal catalyst in the decarbonylation of the DMF solvent. The C6—

O8H and C3—O7H groups appended on the phenyl ring of the ligand form intramolecular O—

H····O hydrogen bonds with the adjacent RPO3
2- moieties (Figure 22). Within the channels, the 

(CH3)2NH2
+ cations are linked by N—H····O hydrogen bonds to the RPO3

2- groups of the 

framework (Table 1). Some short C— H····O contacts (Table 1) may help to consolidate the 

structure. 
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TABLE 2 

Crystallographic Data For {[(CH3)2NH2]2[Zn{O3PC6H2(OH)2PO3}]}n (5) 

 

Formula Mass 

 

423.59 

 

Color and Habit 

 

colorless 

 

Space Group 

 

Monoclinic P21/n 

 

a (Å) 

 

8.8455(5)  

 

b (Å) 

 

16.4492(9)  

 

c (Å) 

 

11.2721(6)    

α (˚) 90 

 

β (˚) 

 

97.338(1)  

 

γ (˚) 

 

90 

 

V (Å) 

 

1626.67(15) 

 

Z 

 

4 

 

T (K) 

 

220 

 

λ (Å) 

 

0.71073 

 

ρcalcd (g cm-3) 

 

1.730     

μ (Mo Kα) (mm-1) 1.75    

R(F) for Fo
2 > 

2(Fo
2)a 

 

0.022   

Rw(Fo
2)b 

 

0.0273  

a ( )R F F F F= − o c o .  b ( ) ( )R F w F F wFw o

2

o

2

c

2
2

o

4

1 2

= −





 






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CHAPTER 4:  

CONCLUSIONS 

Based on the data collected, the belief that I could successfully synthesize the target 

ligands for the future production of MOFs is supported for all the compounds synthesized 

except N,N´-bis(4-pyridyl)-perylene diimide (4). Perylene compounds resulted in minimal yield 

when both imidazole and DMF were used as solvents. In fact, the DMF synthesis failed entirely, 

leading us to conclude that a different synthetic method should be used in order to produce the 

desired compounds. Future study is needed to determine what solvent would be sufficient for 

the synthesis of compound 4. Imidazole was successful in synthesizing most of the target 

compounds. Aside from the products obtained for N,N´-bis(4-pyridyl)-naphthalene diimide (1), 

the yields were generally poor. The yields were high whenever DMF was used in all the 

synthesis performed. It is important to conclude that an optimized imidazole synthesis could be 

used on account of the shorter refluxing time while the synthesis in DMF provide the pathway 

to better yields thus offsetting the time difference in the two synthetic methods. 

On account of the synthesis of {[(CH3)2NH2]2[Zn{O3PC6H2(OH)2PO3}]}n (5), more 

research should be conducted into the mechanism of decarbonylation of DMF in situ. Taking the 

current known mechanism for this process it would be beneficial to study the effects of DMF as 

a solvent in future coordination polymer synthesis for proton conductivity research.  
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